Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T22:20:39.140Z Has data issue: false hasContentIssue false

Parental influence on X-autosome translocation-induced variegation in the mouse

Published online by Cambridge University Press:  14 April 2009

B. M. Cattanach
Affiliation:
City of Hope Medical Center, Department of Biology, Duarte, California, U.S.A.
J. N. Perez
Affiliation:
City of Hope Medical Center, Department of Biology, Duarte, California, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Females heterozygous for the T(1; X)CtX-autosome translocation tend to have lower levels of c-variegation when their rearranged X is inherited from the father rather than from the mother. The difference is not due to a maternal effect. It is postulated that a paternal or parental-source effect, such as that found to modify position effect variegation in Drosophila, is operating but the possibility that a bias in the inactivation of the maternal and paternal X chromosomes is responsible cannot be ruled out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Baker, W. K. (1963). Genetic control of pigment differentiation in somatic cells. Am. Zool. 3, 57.CrossRefGoogle Scholar
Baker, W. K. (1968). Position effect variegation. Adv. Genetic. 14, 133.CrossRefGoogle ScholarPubMed
Baker, W. K. & Spofford, J. B. (1959). Heterochromatic control of position-effect variegation in Drosophila. Reprinted from Biological Contributions, University of Texas, Austin, Fall.Google Scholar
Cattanach, B. M. (1961 a). A chemically induced variegated-type position effect in the mouse. Z. VererbLehre. 92, 165.Google ScholarPubMed
Cattanach, B. M. (1961 b). XXY mice. Genet. Res., Camb. 2, 156.CrossRefGoogle Scholar
Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of autosomal genes attached to the X-chromosome. Z. VererbLehre. 96, 313.Google ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse X chromosome. Genetics, Princeton 57, 331.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Pollard, C. E. & Perez, J. N. (1969). Controlling elements in the mouse X-chromosome. I. Interaction with the X-linked genes. Genet. Res., Camb. 14, 223.CrossRefGoogle ScholarPubMed
Cohen, J. (1962). Position-effect variegation at several closely linked loci in Drosophila melanogaster. Genetics, Princeton 47, 647.CrossRefGoogle ScholarPubMed
Crouse, H. V. (1960). The controlling element in sex chromosome behavior in Sciara. Genetics, Princeton 45, 1429.CrossRefGoogle ScholarPubMed
Dun, R. B. & Frazer, A. S. (1959). Selection for an invariant character, vibrissae number, in the house mouse. Aust. J. biol. Sci. 12, 506.CrossRefGoogle Scholar
Frazer, A. S. & Kindred, B. M. (1960). Selection for an invariant character, vibrissae number, in the house mouse. II. Limits to variability. Aust. J. biol. Sci. 13, 45.Google Scholar
Hessler, A. Y. (1961). A study of parental modification of variegated position effects. Genetics, Princeton 46, 463.CrossRefGoogle ScholarPubMed
Hughes-Schrader, S. (1948). Cytology of coccids (Coccoidea-Homoptera) Adv. Genetics, Princeton 2, 127.CrossRefGoogle Scholar
Hull, P. (1964). Partial incompatibility not affecting total litter size in the mouse. Genetics, Princeton 50, 563.CrossRefGoogle Scholar
Hull, P. (1968). Maternal-foetal incompatibility associated with the H-3 locus in the mouse. Heredity 24, 203.CrossRefGoogle Scholar
Kindred, B. M. (1961). A maternal effect on vibrissae score due to the Tabby gene. Aust. J. biol. Sci. 14, 627.Google Scholar
Lewis, E. B. (1950). The phenomenon of position effect variegation. Adv. Genet. 3, 73.CrossRefGoogle Scholar
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature, Lond. 190, 372.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1967). Mouse News Letter 36, 36.Google Scholar
Metz, C. W. (1938). Chromosome behaviour, inheritance and sex determination. Z. Zellforsch. mikrosk. Anat. 19, 595.Google Scholar
Mintz, B. (1967). Gene control of mammalian pigmentary differentiation. I. Clonal origin of melanocytes. Proc. Natn. Acad. Sci., U.S.A. 58, 344.CrossRefGoogle ScholarPubMed
Nelson-Rees, W. A. (1962). The effects of radiation damaged heterochromatic chromosomes on male fertility in the mealy bug, Planococcus citri (Risso). Genetics, Princeton 47, 661.CrossRefGoogle ScholarPubMed
Noujdin, N. I. (1944). The regularities of heterochromatin influence on mosaicism. J. gen. Biol. 5, 357.Google Scholar
Ohno, S. & Cattanach, B. M. (1962). Cytological study of an X-autosome translocation in Mus musculus. Cytogenetics 1, 129.Google Scholar
Russell, L. B. (1963). Mammalian X-chromosome action: Inactivation limited in spread and in region of origin. Science, N. Y. 140, 976.CrossRefGoogle ScholarPubMed
Russell, L. B. (1964). Another look at the single-active-X hypothesis. Trans. N.Y. Acad. Sci. 26, 726.CrossRefGoogle Scholar
Russell, L. B. & Bangham, J. W. (1959). Variegated-type position effects in the mouse. Genetics, Princeton 44, 532.Google Scholar
Russell, L. B. & Bangham, J. W. (1961). Variegated-type position effects in the mouse. Genetics, Princeton 46, 509.Google Scholar
Schneider, I. (1962). Modification of V-type position effects in Drosophila virilis. Genetics, Princeton 47, 25.Google Scholar
Spofford, J. B. (1959). Parental control of position-effect variegation. I. Parental heterochromatin and expression of the white locus in compound X-Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 45, 1003.Google Scholar
Spofford, J. B. (1961). Parental control of position-effect variegation. II. Effect of sex of parent contributing white mottled rearrangement in Drosophila melanogaster. Genetics, Princeton 46, 1151.CrossRefGoogle ScholarPubMed
Spofford, J. B. (1967). Single-locus modification of position-effect variegation in Drosophila melanogaster. Genetics, Princeton 57, 751.Google Scholar