Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T17:59:07.670Z Has data issue: false hasContentIssue false

Observations on a set of radiation-induced dominant T-like mutations in the mouse*

Published online by Cambridge University Press:  14 April 2009

Dorothea Bennett
Affiliation:
Cornell University Medical College, New York, N.Y., U.S.A.
L. C. Dunn
Affiliation:
Nevis Biological Station, Columbia University, Irvington-on-Hudson, N.Y., U.S.A.
Martha Spiegelman
Affiliation:
Cornell University Medical College, New York, N.Y., U.S.A.
Karen Artzt
Affiliation:
Cornell University Medical College, New York, N.Y., U.S.A.
Janice Cookingham
Affiliation:
Nevis Biological Station, Columbia University, Irvington-on-Hudson, N.Y., U.S.A.
Elizabeth Schermerhorn
Affiliation:
Nevis Biological Station, Columbia University, Irvington-on-Hudson, N.Y., U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genetic analysis of seven dominant short tailed mutations independently induced by radiation of male mice showed that six were allelic to T (Brachyury) but not identical to it. Homozygotes for each mutant die at least 2 days earlier than T/T homozygotes; two that were studied histologically are indistinguishable from one another. The development of these abnormal embryos is arrested by seven days of gestation, when cells of embryonic ectoderm cease proliferation and become pycnotic. Endoderm and extra-embryonic ectoderm do not seem to be primarily affected, and survive and grow for at least 2 days more. Serological studies of one of these mutations suggest that it is a deletion. A review is presented of these and other T-like mutations that have been described; from this it appears that five different categories of T-like mutants are discernible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Batchelor, A. L., Phillips, R. J. S. & Searle, A. G. (1966). A comparison of the mutagenic effectiveness of chronic neutron and γ-irradiation of mouse spermatogonia. Mutation Research 3, 218229.CrossRefGoogle ScholarPubMed
Batchelor, A. L., Phillips, R. J. S. & Searle, A. G. (1967). The revised dose-rate effect with fast neutron irradiation of mouse spermatogonia. Mutation Research 4, 229231.CrossRefGoogle Scholar
Bennett, D. & Dunk, L. C. (1958). Effects on embryonic development of a group of genetically similar lethal alleles derived from different populations of wild house mice. Journal of Morphology 103, 135158.CrossRefGoogle Scholar
Bennett, D. (1964). Abnormalities associated with a chromosome region in the mouse. II. The embryological effects of lethal alleles at the t-region. Science 144, 263267.Google ScholarPubMed
Bennett, D., Goldberg, E., Dunn, L. C. & Boyse, E. A. (1972). Serological detection of a cell surface antigen specified by the T (Brachyury) mutant gene in the house mouse. Proceedings of the National Academy of Sciences, U.S.A. 69, 20762080.CrossRefGoogle Scholar
Carter, T. C. & Phillips, R. J. S. (1950). Three recurrences of mutants in the house mouse. Journal of Heredity 41, 252.CrossRefGoogle ScholarPubMed
Chesley, P. (1935). Development of the short-tailed mutant in the house mouse. Journal of Experimental Zoology 70, 429459.CrossRefGoogle Scholar
Dobrovolskaia-Zavadskaia, N. (1927). Sur la mortification spontanée de la queue chez la souris nouveau-née et sur l'existence d'un caractère (facteur) héréditaire non viable. Comptes Rendus des Siances de la Sociiti de Biologie, Paris 97, 114116.Google Scholar
Dunn, L. C., Bennett, D. & Beasley, A. B. (1962). Mutation and recombination in the vicinity of a complex gene. Genetics 47, 285303.CrossRefGoogle ScholarPubMed
Dunn, L. C. & Bennett, D. (1967). Sex differences in recombination of linked genes in animals. Genetical Research 9, 211220.CrossRefGoogle ScholarPubMed
Hummel, K. (1963). Personal Communication in Mouse News Letter 28, 32.Google Scholar
Johnson, D. R. (1974). Hairpin-tail: a case of post-reductional gene action in the mouse egg. Genetics 76, 795805.CrossRefGoogle ScholarPubMed
Kuminek, K. (1960). Die Genetik einer neu aufgetretenen spontanen Kurzschwanzmutation bei der Hausmaus. Zeitschrift für Vererbungslehre 91, 182200.Google Scholar
Lyon, M. F. (1959). A new dominant T-allele in the house mouse. Journal of Heredity 50, 140142.CrossRefGoogle Scholar
Lyon, M. F. & Meredith, R. (1964 a). Investigations of the nature of t-alleles in the mouse. I. Genetic analysis of a series of mutants derived from a lethal allele. Heredity 19, 301312.CrossRefGoogle ScholarPubMed
Lyon, M. F. & Meredith, R. (1964 b). Investigations of the nature of t-alleles in the mouse. II. Genetic analysis of an unusual mutant allele and its derivations. Heredity 19, 313325.CrossRefGoogle Scholar
Moutier, R. (1973 a). Personal Communication in Mouse News Letter 48, 38.Google Scholar
Moutier, R. (1973 b). Personal Communication in Mouse News Letter 49, 42.Google Scholar
Searle, A. G. (1966). Curtailed, a new dominant T-allele in the house mouse. Genetical Research 7, 8695.CrossRefGoogle ScholarPubMed
Searle, A. G. (1974). Mutation induction in mice. Advances in Radiation Biology 4, 131207.CrossRefGoogle Scholar
Selby, P. B. (1973 a). X-Ray induced specific-locus mutation rates in newborn male mice. Mutation Research 18, 6375.CrossRefGoogle ScholarPubMed
Selby, P. B. (1973 b). X-Ray induced specific-locus mutation rates in young male mice. Mutation Research 18, 7788.CrossRefGoogle ScholarPubMed
Sobotta, J. (1911). Die Entwicklung des Eies der Maus von ersten Auftreten des Mesoderms an bis zur Ausbildung der Embryonenlage und dem Auftreten des Allantois. Archiv für Mikroskopische Anatomie,Bonn 78, 271352.CrossRefGoogle Scholar