Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T15:25:28.588Z Has data issue: false hasContentIssue false

Molecular analysis of opaque-2 alleles from Zea mays L. reveals the nature of mutational events and the presence of a hypervariable region in the 5′ part of the gene

Published online by Cambridge University Press:  14 April 2009

Hans Hartings
Affiliation:
Istituto Sperimentale per la Cerealicoltura, Sezione di Bergamo, via Stezzano 24, 24126 Bergamo, Italy
Nadia Lazzaroni
Affiliation:
Istituto Sperimentale per la Cerealicoltura, Sezione di Bergamo, via Stezzano 24, 24126 Bergamo, Italy
Vincenzo Rossi
Affiliation:
Istituto Sperimentale per la Cerealicoltura, Sezione di Bergamo, via Stezzano 24, 24126 Bergamo, Italy
Giorgia R. Riboldi
Affiliation:
Istituto Sperimentale per la Cerealicoltura, Sezione di Bergamo, via Stezzano 24, 24126 Bergamo, Italy
Richard D. Thompson
Affiliation:
Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50879 Köln, Germany
Francesco Salamini
Affiliation:
Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, 50879 Köln, Germany
Mario Motto*
Affiliation:
Istituto Sperimentale per la Cerealicoltura, Sezione di Bergamo, via Stezzano 24, 24126 Bergamo, Italy
*
* Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ten recessive Opaque-2 (O2) alleles of independent origin were characterized at the molecular level. The results revealed a high level of polymorphism at the O2 locus. In addition, our data suggest the possible cause for the recessive character of some of the alleles investigated, and allow us to infer some conclusions concerning the degree of relationship between the o2 mutations. Comparison of genomic sequences spanning the first exon and obtained from a series of wild-type and recessive alleles revealed the presence of a hypervariable region, involving different dipeptides, in the N-terminal part of the O2 protein.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

References

Burr, F. A., & Burr, B., (1982). Three mutations in Zea mays affecting zein accumulation. Journal of Cell Biology 94, 201206.CrossRefGoogle ScholarPubMed
Dean, C., Van Den Elzen, P., Tamaki, S., Dunsmuir, P., & Bedbrook, J., (1985). Differential expression of the eight genes of the petunia ribulose biphosphate carboxylase small subunit multi-gene family. EMBO Journal 4, 30553061.CrossRefGoogle ScholarPubMed
Doebley, J. D., Stec, A., Wendel, J., & Edwards, M., (1990). Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proceedings of the National Academy of Sciences, USA 87, 98889892.CrossRefGoogle ScholarPubMed
Feinberg, A. P., & Vogelstein, B., (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Gerber, H. P., Seipel, K., Georgiev, O., Höfferer, M., Hug, M., Rusconi, S., & Schaffner, W., (1994). Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808811.CrossRefGoogle ScholarPubMed
Hartings, H., Maddaloni, M., Lazzaroni, N., Di Fonzo, N., Motto, M., Salamini, F., & Thompson, R. D., (1989). The O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO Journal 8, 27952801.CrossRefGoogle ScholarPubMed
Hartings, H., Spilmont, C., Lazzaroni, N., Rossi, V., Salamini, F., Thompson, R. D., & Motto, M., (1991). Molecular analysis of the Bg–rbg transposable element system of Zea mays L. Molecular and General Genetics 227, 9196.CrossRefGoogle ScholarPubMed
Hinnebusch, A. G., (1990). Involvement of an initiation factor and protein phosphorylation in translational control of GCN4 mRNA. Trends in Biochemical Science 15, 148152.CrossRefGoogle ScholarPubMed
Iltis, H. H., (1987). Maize evolution and agricultural origins. In Grass Systematics and Evolution (ed. Soderstrom, T.Hilu, K., Campbell, C. and Barkworth, M.), pp. 195213. Washington D.C.: Smithsonian Institution Press.Google Scholar
Jones, R. A., Larkins, B. A., & Tsai, C. Y., (1977). Storage protein synthesis in maize. II. Reduced synthesis of a major component by the opaque-2 mutant of maize. Plant Physiology 59, 525529.CrossRefGoogle Scholar
Kimura, M., (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, USA 78, 454458.CrossRefGoogle ScholarPubMed
Kodrzycki, R., Boston, R. S., & Larkins, B. A., (1989). The opaque-2 mutation of maize differentially reduces zein gene transcription. The Plant Cell 1, 105114.Google ScholarPubMed
Kunze, R., Stochaj, U., Laufs, J., & Starlinger, P., (1987). Transcription of transposable element Activator (Ac) of Zea mays L. EMBO Journal 6, 15551563.CrossRefGoogle ScholarPubMed
Landschultz, W. H., Johnston, P. F., & McKnight, S. L., (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 17591764.CrossRefGoogle Scholar
Lohmer, S., Maddaloni, M., Motto, M., Di Fonzo, N., Hartings, H., Salamini, F., & Thompson, R. D., (1991). The maize regulatory locus opaque-2 encodes for a DNAbinding protein which activates the transcription of the b-32 gene. EMBO Journal 10, 617624.CrossRefGoogle ScholarPubMed
Lohmer, S., Motto, M., Maddaloni, M., Salamini, F., & Thompson, R. D., (1993). Translation of the mRNA of the maize transcriptional activator Opaque-2 is inhibited by upstream open reading frames present in the leader sequence. The Plant Cell 5, 6573.Google ScholarPubMed
Maddaloni, M., Di Fonzo, N., Hartings, H., Lazzaroni, N., Salamini, F., Thompson, R. D., & Motto, M., (1989). The sequence of the zein regulatory gene Opaque-2 (02) of Zea mays. Nucleic Acids Research 89, 7532.CrossRefGoogle Scholar
Mertz, E. T., Bates, L. S., & Nelson, O. E., (1964). Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145, 279280.CrossRefGoogle ScholarPubMed
Montanelli, C., Di Fonzo, N., Marotta, R., Motto, M., Soave, C., & Salamini, F., (1984). Occurrence and behaviour of the components of the o2-m(r)-Bg system of maize controlling elements. Molecular and General Genetics 197,209–218.CrossRefGoogle Scholar
Moran, E., & Mathews, M. B., (1987). Multiple functional domains in the adenovirus E1A gene. Cell 48, 177178.CrossRefGoogle ScholarPubMed
Motto, M., Fonzo, N. Di, Hartings, H., Maddaloni, M., Salamini, F., Soave, C., & Thompson, R. D., (1989). Regulatory genes affecting maize storage protein synthesis. Oxford Survey of Plant Molecular and Cell Biology 6,87–114.Google Scholar
Motto, M., Maddaloni, M., Ponziani, G., Brembilla, M., Marotta, R., Di Fonzo, N., Soave, C., Thompson, R. D., & Salamini, F., (1988). Molecular cloning of o2-m5 allele of Zea mays using transposon marking. Molecular and General Genetics 212, 488494.CrossRefGoogle Scholar
Roditi, I., Carrington, M., & Turner, M., (1987). Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature 325, 272274.CrossRefGoogle Scholar
Salamini, F., (1980). Controlling elements at the Opaque-2 locus of maize: their involvement in the origin of spontaneous mutations. Cold Spring Harbor Symposia on Quantitative Biology 45, 467476.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F., & Maniatis, T., (1989). Molecular Cloning: A Laboratory Manual, 2nd ed.New York: Cold Spring Harbor Laboratory Press.Google Scholar
Schmidt, R. J., Burr, F. A., Aukerman, M. J., & Burr, B., (1990). Maize regulatory gene opaque-2 encodes a protein with a ‘leucine-zipper’ motif that binds to zein DNA. Proceedings of the National Academy of Sciences, USA 97, 4650.CrossRefGoogle Scholar
Schmidt, R. J., Burr, F. A., & Burr, B., (1987). Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science 238, 960963.CrossRefGoogle ScholarPubMed
Schmidt, R. J., Ketudat, M., Aukerman, M. J., & Koschek, G., (1992). Opaque-2 is a transcriptional activator that recognizes a specific target site in 22 kD zein genes. The Plant Cell 4 689700.Google ScholarPubMed
Soave, C., Righetti, P. G., Lorenzoni, C., Gentinetta, E., & Salamini, F., (1976). Expressivity of the Opaque-2 gene at the level of zein molecular components. Maydica 21, 6175.Google Scholar
Soave, C., Tardani, L., Di Fonzo, N., & Salamini, F., (1981). Zein level in maize endosperm depends on a protein under control of the Opaque-2 and Opaque-6 loci. Cell 27, 403410.CrossRefGoogle ScholarPubMed
Southern, E. M., (1975). Detection of specific sequences among DNA fragments seperated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle Scholar
Vinson, C. R., Sigler, P. B., & McKnight, S. L., (1989). Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911916.CrossRefGoogle ScholarPubMed
Weber, J. L., & May, P. E., (1989). An abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. American Journal of Human Genetics 44, 388396.Google ScholarPubMed
Wolfe, K. H., Li, W. H., & Sharp, P. M., (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences, USA 84, 90549058.CrossRefGoogle ScholarPubMed