Skip to main content Accessibility help
×
Home

Models of the spread of non-autonomous selfish transposable elements when transposition and fitness are coupled

  • J. F. Y. Brookfield (a1)

Summary

I investigate models of the spread of transposable elements, such as the Drosophila melanogaster P elements, that can exist in autonomous and non-autonomous forms. Elements which have their major impact on host fitness in the process of transposition can, under certain conditions, come to a stable balance between transposition and selection. This stable balance for autonomous elements can be disrupted by the invasion of further elements, which do not produce a transposase enzyme, and may produce a repressor of transposition. I examine this secondary invasion process, and show that a stable equilibrium copy number for intact elements is neither a necessary nor a sufficient condition for non-autonomous elements to invade. Nevertheless, invasion occurs under a broad range of models and conditions. This requires neither that the non-autonomous elements produce a trans-acting repressor of transposition, nor that they titrate transposase. The elimination of autonomous elements follows the increase in non-autonomous elements unless the latter encode powerful repressors of transposition. Approximate solutions for the equilibrium copy number of autonomous elements and rate of invasion of non-autonomous elements can be found under some models for transposition and selection. The predictions of the model are compared with recent empirical studies of the D. melanogaster P system

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Models of the spread of non-autonomous selfish transposable elements when transposition and fitness are coupled
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Models of the spread of non-autonomous selfish transposable elements when transposition and fitness are coupled
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Models of the spread of non-autonomous selfish transposable elements when transposition and fitness are coupled
      Available formats
      ×

Copyright

References

Hide All
Anxolabéhère, D., Nouaud, D., Periquet, G., & Tchen, P., (1985). P element distribution of Eurasian populations of Drosophila melanogaster: a genetic and molecular analysis. Proceedings of the National Academy of Sciences of the USA 82, 54185422.
Anxolabéhère, D., Charles-Palabost, L., Flueriet, A., & Periquet, G., (1987). Temporal surveys of French populations of Drosophila melanogaster: P—M system, enzymatic polymorphism and infection by the sigma virus. Heredity 61, 121131.
Anxolabéhère, D., Kidwell, M. G., & Periquet, G., (1988). Molecular characteristics of diverse populations are consistent with the hypothesis of recent invasion of Drosophila melanogaster by mobile P elements. Molecular Biology and Evolution 5, 252269.
Bangham, C. R. M., & Kirkwood, T. B. L., (1990). Defective interfering particles: effects in modulating viral growth and persistence. Virology 179, 821826.
Biémont, C., Lemeunier, F., Guerriero, M. P. Garcia, Brookfield, J. F., Gautier, C., Aulard, S., & Pasyukova, E. G., (1994). Population dynamics of the copia, mdg1, mdg3, gypsy and P transposable elements in a natural population of Drosophila melanogaster. Genetical Research 63, 197212.
Black, D. M., Jackson, M. S., Kidwell, M. G., & Dover, G. A., (1987). KP elements repress P induced hybrid dysgenesis in D. melanogaster. EMBO Journal 6, 41254135.
Brookfield, J. F. Y., (1991). Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics 128, 471486.
Charlesworth, B., & Charlesworth, D., (1983). The population dynamics of transposable elements. Genetical Research 42, 127.
Charlesworth, B., & Langley, C. H., (1986). The evolution of self-regulated transposition of transposable elements. Genetics 112, 359383.
Charlesworth, B., & Langley, C. H., (1989). The population genetics of Drosophila transposable elements. Annual Review of Genetics 23, 251287.
Eanes, W. F., Wesley, C., & Charlesworth, B., (1992). Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. Genetical Research 59, 19.
Engels, W. R., (1989). P elements in Drosophila. In Mobile DNA (ed. Berg, D., & Howe, M.). Washington, DC: ASM Publications.
Engels, W. R., Benz, W. K., Preston, C. R., Graham, P. L., Phillis, R. W., & Robertson, H. M., (1987). Somatic effects of P element activity in Drosophila melanogaster: pupal lethality. Genetics 117, 745757.
Federoff, N. V., (1989). Maize transposable elements. In Mobile DNA (ed. Berg, D., & Howe, M.). Washington, DC: ASM Publications.
Gierl, A., Saedler, H., & Peterson, P. A., (1989). Maize transposable elements. Annual Review of Genetics 23, 7185.
Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R., & Engels, W. R., (1991). Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 11101117.
Gloor, G. B., Preston, C. R., Johnson-Schlitz, D. M., Nassif, N. A., Phillis, R. W., Benz, W. K., Robertson, H. M., & Engels, W. R., (1993). Type I repressors of P element mobility. Genetics 135, 8195.
Heath, E., & Simmons, M., (1991). Genetic and molecular analysis of repression in the P-M system of hybrid dysgenesis in Drosophila melanogaster. Genetical Research 57, 213226.
Hickey, D. A., (1982). Selfish DNA: a sexually transmitted nuclear parasite. Genetics 101, 519531.
Jackson, M. S., Black, D. M., & Dover, G. A., (1988). Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster. Genetics 120, 10031013.
Kaplan, N., Darden, T., & Langley, C. H., (1985). Evolution and extinction of transposable elements in Mendelian populations. Genetics 109, 459480.
Kaufman, P. D., & Rio, D. C., (1991). Drosophila P-element transposase is a transcriptional repressor in vitro. Proceedings of the National Academy of Sciences of the USA 88, 26132617.
Kidwell, M. G., (1985). Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. Genetics 111, 337350.
Laski, F. A., Rio, D. C., & Rubin, G. M., (1986). Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44, 719.
Lemaitre, B., & Coen, D., (1991). P regulatory products repress in vivo the P promoter activity in P-lacZ fusion genes. Proceedings of the National Academy of Sciences of the USA 88, 44194423.
Misra, S., & Rio, D. C., (1990). Cytotype control of Drosophila P element transposition: the 66 kD protein is a repressor of transposase activity. Cell 62, 269284.
Nassif, N., Penney, J., Pal, S.E., igels, W. R., & Gloor, G. B., (1994). Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Molecular and Cellular Biology 14, 16131625.
Nitasaka, E., Mukai, T., & Yamazaki, T., (1987). Repressor of P elements in Drosophila melanogaster: cytotype determination by a defective P element with only open reading frames 0 through 2. Proceedings of the National Academy of Sciences of the USA 84, 76057608.
Preston, C., & Engels, W. R., (1989). Spread of P transposable elements in inbred lines of Drosophila melanogaster. Progress in Nucleic Acids Research and Molecular Biology 36, 7185.
Raymond, J. D., Ojala, T. A., White, J., & Simmons, M., (1991). Inheritance of P-element regulation in Drosophila melanogaster. Genetical Research 57, 227234.
Rio, D. C., (1990). Molecular mechanisms regulating Drosophila P element transposition. Annual Review of Genetics 24, 543578.
Robertson, H. M., & Engels, W. R., (1989). Modified P elements that mimic the P cytotype in Drosophila melanogaster. Genetics 123, 815824.
Ronsseray, S., Lehmann, M., & Periquet, G., (1989). Comparison of the regulation of P elements in M and M′ strains of Drosophila melanogaster. Genetical Research 54, 1321.
Ronsseray, S., Lehmann, M., & Anxolabéhère, D., (1991). The maternally inherited regulation of P elements in Drosophila melanogaster can be elicited by two P copies at cytological site 1A on the X chromosome. Genetics 129, 501512.
Szathmary, E., (1992). Natural selection and coexistence of defective and complementing virus segments. Journal of Theoretical Biology 157, 383406.

Models of the spread of non-autonomous selfish transposable elements when transposition and fitness are coupled

  • J. F. Y. Brookfield (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed