Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-07T14:00:47.609Z Has data issue: false hasContentIssue false

Mating-type alleles in Illinois strains of Tetrahymena pyriformis, syngen 1

Published online by Cambridge University Press:  14 April 2009

Ruth Brosi Phillips
Affiliation:
Zoology Department, University of Illinois, Urbana, Illinois, U.S.A.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two new wild strains of T. pyriformis, syngen 1, have been examined for new matingtype, serotype and isoenzyme alleles. No new alleles at the mating type (mt) locus were found, but the two alleles previously found were extracted. No new alleles were found at the other five loci examined, but two alleles were obtained for each locus. These observations indicate that a limited polymorphism exists for these loci in natural populations of T. pyriformis, syngen 1.

Type
Short Papers
Copyright
Copyright © Cambridge University Press 1968

References

REFERENCES

Allen, S. L. (1960). Inherited variations in the esterases of Tetrahymena. Genetics 45, 10511070.Google Scholar
Allen, S. L. (1961). Genetic control of the esterases in the protozoan Tetrahymena pyriformis. Ann. N.Y. Acad. Sci. 94, 753773.CrossRefGoogle ScholarPubMed
Allen, S. L. (1965). Genetic control of enzymes in Tetrahymena. Brookhaven Symp. Biol. 18, 2754.Google Scholar
Allen, S. L.Misch, M. S. & Morrison, B. M. (1963 a). Variations in the electrophoretically separated acid phosphatases of Tetrahymena. J. Histochem. Cytochem. 11, 706719.CrossRefGoogle Scholar
Allen, S. L., Misch, M. S. & Morrison, B. M. (1963 b). Genetic control of the acid phosphatases in Tetrahymena: formation of a hybrid enzyme. Genetics 48, 16351658.CrossRefGoogle ScholarPubMed
Margolin, P., Loefer, J. B. & Owen, R. D. (1959). Immobilizing antigens of Tetrahymena pyriformis. J. Protozool. 6, 207215.Google Scholar
Metz, C. B. (1954). Mating substances and the physiology of fertilization in ciliates. In Sex in Microorganisms (ed. Weurich, D. H.), pp. 284334. A.A.A.S. Symp.Google Scholar
Nanney, D. L. (1956). Caryonidal inheritance and nuclear differentiation. Am. Nat. 90, 291307.Google Scholar
Nanney, D. L. (1957). The role of cytoplasm in heredity. In The Chemical Basis of Heredity (ed. McElroy, W. D. and Glass, B.), pp. 134163. Baltimore: The Johns Hopkins Press.Google Scholar
Nanney, D. L. (1959). Genetic factors affecting mating type frequencies in variety 1 of Tetrahymena pyriformis. Genetics 44, 11731184.CrossRefGoogle ScholarPubMed
Nanney, D. L. (1964). Macronuclear differentiation and subnuclear assortment in ciliates. In Role of Chromosomes in Development (ed. Locke, M.), pp. 253273. New York: Academic Press.Google Scholar
Nanney, D. L. & Caughey, P. A. (1953). Mating type determination in Tetrahymena pyriformis. Proc. natn. Acad. Sci. U.S.A. 39, 10571063.CrossRefGoogle ScholarPubMed
Nanney, D. L., Caughey, P. A. & Tefankjian, A. (1955). The genetic control of mating type potentialities in Tetrahymena pyriformis. Genetics 40, 668680.Google Scholar
Nanney, D. L. & Dubert, J. M. (1960). The genetics of the H serotype system in variety 1 of Tetrahymena pyriformis. Genetics 45, 13351358.Google Scholar
Nanney, D. L., Nagel, J. & Touchberry, R. W. (1964). The timing of H antigenic differentiation in Tetrahymena. J. expl Zool. 155, 2542.Google Scholar
Orias, E. (1960). The genetic control of two lethal traits in variety 1, Tetrahymena pyriformis. J. Protozool. 7, 6469.Google Scholar
Phillips, R. B. (1967 a). Inheritance of T serotypes in Tetrahymena. Genetics 56, 667681.Google Scholar
Phillips, R. B. (1967 b). Differentiation of T serotypes in Tetrahymena. Genetics 56, 683692.Google Scholar
Sonneborn, T. M. (1957). Breeding systems, reproductive methods and species problems in protozoa. In The Species Problem (ed. Mayr, E.), pp. 155324. A.A.A.S. Symp.Google Scholar