Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T16:50:19.887Z Has data issue: false hasContentIssue false

Mariner, Mos and associated aberrant traits in Drosophila mauritiana

Published online by Cambridge University Press:  14 April 2009

James W. Jacobson
Affiliation:
Department of Biology, University of Houston, Houston, Texas 77204-5513

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A suite of aberrant genetic traits, including increased mutation rate, sex-limited mutation and distorted transmission ratios, was produced among progeny of genetic crosses between two strains of Drosophila mauritiana when a paternally contributed Mos excision factor is placed into a non- Mos genetic background. In the reciprocal cross, involving maternally contributed Mos and Mos associated cytoplasm, the same genetic abnormalities are not observed. Differential effects on mariner excision in germ-line versus somatic tissue are apparent. Because Mos is known to influence the mobility of the mariner transposable element, these traits may be associated with mariner excision and/or transposition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Berg, D. E. & Howe, M. M. (1989). Mobile DNA. American Society for Microbiology, Washington, DC.Google Scholar
Blackman, R. K., Grimaila, R., Koehler, M. M. D. & Gelbart, W. M. (1987). Mobilization of hobo elements residing within the Decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49, 497505.CrossRefGoogle ScholarPubMed
Bregliano, J. C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 363410. New York: Academic Press.Google Scholar
Bryan, G. J. & Hartl, D. L. (1988). Maternally inherited transposon excision in Drosophila simulans. Science 240, 215217.CrossRefGoogle ScholarPubMed
Bryan, G. J., Jacobson, J. W. & Hartl, D. L. (1987). Heritable somatic excision of a Drosophila transposon. Science 235, 16361638.CrossRefGoogle ScholarPubMed
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.CrossRefGoogle Scholar
Engels, W. R. (1984). A trans-acting product needed for P-factor transposition in Drosophila. Science 226, 11941196.CrossRefGoogle ScholarPubMed
Fitzpatrick, G. J. & Sved, J. A. (1986). High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genetical Research 48, 8994.CrossRefGoogle Scholar
Haymer, D. S. & Marsh, J. L. (1986). Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Developmental Genetics 6, 281291.CrossRefGoogle Scholar
Hiraizuma, Y. (1977). The relationship among transmission frequency, male recombination and progeny production in Drosophila melanogaster. Genetics 87, 8393.CrossRefGoogle Scholar
Jacobson, J. W. & Hartl, D. L. (1985). Coupled instability of two X-linked genes in Drosophila mauritiana: germinal and somatic mutability. Genetics 111, 5765.CrossRefGoogle ScholarPubMed
Jacobson, J. W., Medhora, M. M. & Hartl, D. L. (1986). Molecular structure of a somatically unstable transposable element in Drosophila. Proceedings of the National Academy of Sciences, U S.A. 83, 86848688.CrossRefGoogle ScholarPubMed
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833.CrossRefGoogle ScholarPubMed
Mackay, T. F. C. (1986). Transposable element-induced fitness mutations in Drosophila melanogaster. Genetical Research 48, 7787.CrossRefGoogle Scholar
Mackay, T. F. C. (1987). Transposable element-induced polygenic mutations in Drosophila melanogaster. Genetical Research 49, 225233.CrossRefGoogle Scholar
Medhora, M. M., Macpeek, A. H. & Hartl, D. L. (1988). Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO Journal 7, 21852189.CrossRefGoogle ScholarPubMed
Shapiro, J. A. (ed.) (1983). Mobile Genetic Elements. New York: Academic Press.Google Scholar
Simmons, M. J. & Bucholz, L. M. (1985). Transposase titration in Drosophila melanogaster: a model for cytotype in the P-M system of hybrid dysgenesis. Proceedings of the National Academy of Sciences, U.S.A. 82, 81198123.CrossRefGoogle Scholar
Sokal, R. R. & Rolf, F. J. (1987). Introduction to Biostatistics. New York: W. H. Freeman & Co.Google Scholar
Torkamanzehi, A., Moran, C. & Nicholas, F. W. (1988). P-element-induced mutation and quantitative variation in Drosophila melanogaster: lack of enhanced response to selection in lines derived from dysgenic crosses. Genetical Research 51, 231238.CrossRefGoogle Scholar
Yannopoulos, G., Stamatis, N., Monastirioti, M., Hatzopoulos, P. & Louis, C. (1987). Hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5MRF. Cell 49, 487495.CrossRefGoogle ScholarPubMed