Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T04:03:49.160Z Has data issue: false hasContentIssue false

Linkage of loci associated with two pigment mutations on mouse chromosome 13

Published online by Cambridge University Press:  14 April 2009

Randall F. Holcombe*
Affiliation:
Department of Medicine, LSU Medical Center, Shreveport, LA 71130 Department of Genetics, Harvard Medical School, Boston, MA 02115
Dennis A. Stephenson
Affiliation:
Department of Molecular and Cellular Biology, Roswell Park Memorial Institute, Buffalo, NY 14263
Alfred Zweidler
Affiliation:
Fox Chase Cancer Center, Philadelphia, PA 19111
Ruby M. Stewart
Affiliation:
Department of Medicine, LSU Medical Center, Shreveport, LA 71130
Verne M. Chapman
Affiliation:
Department of Molecular and Cellular Biology, Roswell Park Memorial Institute, Buffalo, NY 14263
J. G. Seidman
Affiliation:
Department of Genetics, Harvard Medical School, Boston, MA 02115
*
* Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Progeny from one intra- and two inter-specific backcrosses between divergent strains of mice were typed to map multiple markers in relation to two pigment mutations on mouse chromosome 13, beige (bg) and pearl (pe). Both recessive mutants on a C57BL/6J background were crossed separately with laboratory strain PAC (M. domesticus) and the partially inbred M. musculus stock PWK. The intra- and inter-specific F1 hybrids were backcrossed to the C57BL/6J parental strain and DNA was prepared from progeny. Restriction fragment length polymorphisms were used to follow the segregation of alleles in the backcross offspring at loci identified with molecular probes. The linkage analysis defines the association between the bg and pe loci and the loci for the T-cell receptor γ-chain gene (Tcrg), the spermatocyte specific histone gene (Hist 1), the prolactin gene (Prl), the Friend murine leukaemia virus integration site 1 (Fim-1), the murine Hanukuh Factor gene (Muhf/Ctla-3) and the dihydrofolate reductase gene (Dhfr). This data confirms results of prior chromosomal mapping studies utilizing bg as an anchor locus, and provides previously unreported information defining the localization of the prolactin gene on mouse chromosome 13. The relationship of multiple loci in relation to pe is similarly defined. These results may help facilitate localization of the genes responsible for two human syndromes homologous with bg and pe, Chediak–Higashi syndrome and Hermansky–Pudlak syndrome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Anagnou, N. P., O'Brien, S. J., Shimada, T., Nash, W. G., Chen, M-J. & Neinhuis, A. W. (1984). Chromosomal organization of the human dihydrofolate reductase genes: dispersion, selective amplification, and a novel form of polymorphism. Proceedings of the National Academy of Sciences, USA 81, 51705174.CrossRefGoogle Scholar
Anagnou, N. P., Antonarakis, S. E., O&Brien, S. J., Modi, W. S. & Neinhuís, A. W. (1988). Chromosomal localization and racial distribution of the polymorphic human dihydrofolate reductase pseudogene (DHFRP1). American Journal of Human Genetics 42, 345352.Google ScholarPubMed
Avner, P., Amar, L., Dandolo, L. & Guenet, J.-L. (1988). Genetic analysis of the mouse using inter-specific crosses. Trends in Genetics 4, 1823.CrossRefGoogle Scholar
Barak, Y. & Nir, E. (1987). Chediak–Higashi syndrome. American Journal of Pediatric Hematology and Oncology 9, 4255.CrossRefGoogle ScholarPubMed
Chabot, B., Stephenson, D. A., Chapman, V. M., Besmer, P. & Bernstein, A. (1988). The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature (London) 335, 8889.CrossRefGoogle Scholar
Chandler, M. E., Kedes, L. H., Cohn, R. H. & Yunis, J. J. (1979). Genes coding for histone proteins in man are located on the distal end of the long arm of chromosome 7. Science 205, 908910.CrossRefGoogle Scholar
Davisson, M. T. & Roderick, T. H. (1981). Recombination percentages. In Genetic Variants and Strains of the Laboratory Mouse (ed. Green, M. C.), pp. 283313. Stuttgart: Gustav Fischer Verlag.Google Scholar
DePinho, R. A. & Kaplan, K. L. (1985). The Hermansky–Pudlak syndrome. Report of three cases and review of pathophysiology and management considerations. Medicine (Baltimore) 64, 192202.CrossRefGoogle ScholarPubMed
George, D. L., Phillips, J., Franke, U. & Seeburg, P. (1981). The genes for growth hormone and chronic somatomammotropin are on the long arm of chromosome 17 in region q21 to pter. Human Genetics 57, 138141.CrossRefGoogle Scholar
Gerschenfeld, H. K. & Weissman, I. L. (1986). Cloning of a cDNA for a T-cell specific serine protease from a cytotoxic lymphocyte. Science 232, 854858.CrossRefGoogle Scholar
Gerschenfeld, H. K., Hershberger, R. J., Shows, T. B. & Weissman, I. L. (1988). Cloning and chromosomal assignment of a human cDNA encoding a T cell and natural killer cell specific trypsin-like serine protease. Proceedings of the National Academy of Sciences, USA 85, 11841188.CrossRefGoogle Scholar
Hammer, M., Islam, S., Cebra-Thomas, J., Brown, J., Pilder, S., Tsai, J.-Y., Biblsins, K. & Silver, E. M. (1988). t haplotype function, evolution and population dynamics. Mouse News Letter 82, 113.Google Scholar
Harper, M. E., Barrera-Saldana, H. A. & Saunders, G. F. (1982). Chromosomal localization of the human placental lactogen-growth hormone gene cluster to 17q22–24. American Journal of Human Genetics 34, 227234.Google ScholarPubMed
Holcombe, R. F., Strauss, W., Owen, F. L., Boxer, L. A., Warren, R. W., Conley, M. E., Farrara, J., Leavitt, R. Y., Fauci, A. S., Taylor, B. A. & Seidman, J. G. (1987). Relationship of the genes for Chediak-Higashi syndrome and the T-cell receptor gamma chain in mouse and man. Genomics 1, 287291.CrossRefGoogle ScholarPubMed
Jackson-Grusby, L. L., Pravtcheva, D., Ruddle, F. H. & Linzer, D. I. H. (1988). Chromosomal mapping of the prolactin/growth hormone gene family in the mouse. Endocrinology 122, 24622466.CrossRefGoogle ScholarPubMed
Justice, M. J., Silan, C. M., Jeffrey, D. C., Buchberg, A. M., Copeland, N. G. & Jenkins, N. A. (1990). A molecular genetic linkage map of mouse chromosome 13 anchored by the beige (bg) and satin (so) loci. Genomics 6, 341351.CrossRefGoogle Scholar
Killary, A. M., Leach, R. J., Moran, R. G. & Fournier, R. E. K. (1986). Assignment of genes encoding dihydrofolate reductase and hexosaminidase B to Mus musculus chromosome 13. Somatic Cell and Molecular Genetics 12, 641648.CrossRefGoogle ScholarPubMed
Lathrop, G. M., Lalouel, J. M., Julier, C. & Ott, J. (1984). Strategies for multilocus linkage analysis in humans. Proceedings of the National Academy of Sciences, USA 81, 34433446.CrossRefGoogle ScholarPubMed
Linzer, D. I. H. & Talamantes, F. (1985). Nucleotide sequence of mouse prolactin and growth hormone mRNAs and expression of these mRNAs during pregnancy. Journal of Biological Chemistry 260, 95749579.CrossRefGoogle ScholarPubMed
Lyon, M. F. & Gleninster, P. H. (1982). A new allele sash (Wsh) at the W-locus and a spontaneous recessive lethal in mice. Genetical Research 39, 315322.CrossRefGoogle Scholar
Mauer, B. J., Barker, P. E., Master, J. N., Ruddle, F. H. & Attardi, G. (1984). Human dihydrofolate reductase gene is located in chromosome 5 and is unlinked to the related pseudogenes. Proceedings of the National Academy of Sciences, USA 81, 14841488.CrossRefGoogle Scholar
Mauer, B. J., Carlock, L., Wasmuth, J. & Attardi, G. (1985). Assignment of human dihydrofolate reductase gene to band q23 of chromosome 5 and of related pseudogene psi HD1 to chromosome 3. Somatic Cell and Molecular Genetics 11, 7985.CrossRefGoogle Scholar
Mullins, L. J., Grant, S. G., Stephenson, D. A. & Chapman, V. M. (1988). Multilocus mapping of the mouse X chromosome. Genomics 3, 187194.CrossRefGoogle ScholarPubMed
Mullins, L. J., Stephenson, D. A., Grant, S. G. & Chapman, V. M. (1990). Efficient linkage of 10 loci in the proximal region of the mouse X chromosome. Genomics 7, 1930.CrossRefGoogle ScholarPubMed
Murre, C., Waldmann, R. A., Morton, C. C., Bongiovanni, K. F., Waldmann, T. A., Shows, T. B. & Seidman, J. G. (1985). Human gamma-chain genes are rearranged in leukemic T-cells and map to the short arm of chromosome 7. Nature (London) 316, 549552.CrossRefGoogle Scholar
Nadeau, J. H., Berger, F. G., Kelley, K. A., Pitha, P. M., Sidman, C. L. & Worrall, M. (1986). Rearrangement of genes located on homologous chromosomal segments in mouse and man: the location of genes for alpha- and beta-interferon, alpha-1 acid glycoprotein-1 and -2 and aminolevulinate dehydratase on mouse chromosome 4. Genetics 104, 12391255.CrossRefGoogle Scholar
Novak, E. K., Hui, S. W. & Swank, R. T. (1984). Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood 63, 536544.CrossRefGoogle ScholarPubMed
Novak, E. K., McGarry, M. P. & Swank, R. T. (1985). Correction of symptoms of platelet storage pool deficiency in animal models for Chediak–Higashi syndrome and Hermansky–Pudlak syndrome. Blood 66, 11961201.CrossRefGoogle ScholarPubMed
Owen, F. L., Taylor, B. A., Zweidler, A. & Seidman, J. G. (1986). The murine gamma chain of the T-cell receptor is closely linked to a spermatocyte specific histone gene and the beige coat color locus on chromosome 13. Journal of Immunology 137, 10441046.CrossRefGoogle ScholarPubMed
Owerbach, D., Rutter, W. J., Martial, J. A., Baxter, J. D. & Shows, T. B. (1980). Genes for growth hormone, chronic somatomammotropin and growth hormone-like gene on chromosome 17 in humans. Science 209, 289292.CrossRefGoogle Scholar
Owerbach, D., Rutter, W. J., Cooke, N. E., Martial, J. A. & Shows, T. B. (1981). The Prolactin gene is located on chromosome 6 in humans. Science 212, 815816.CrossRefGoogle ScholarPubMed
Roberts, B., Barton, P., Minty, A., Daubus, P., Weydert, A., Bonhomme, F., Catalan, J., Charzottes, D., Guenet, J.-L. & Buckingham, M. (1985). Investigation of genetic linkage between myosin and actin genes using an interspecific back-cross. Nature (London) 314, 181183.CrossRefGoogle Scholar
Roder, J. & Duwe, A. (1979). The beige mutation in the mouse selectively impairs natural killer cell function. Nature (London) 278, 451453.CrossRefGoogle ScholarPubMed
Ryder-Cook, A. S., Sicinski, P., Thomas, K., Davies, K. E., Worton, R. G., Barnard, E. A., Darlison, M. G. & Barnard, P. J. (1988). Localization of the mdx mutation within the mouse dystrophin gene. EMBO Journal 7, 30173021.CrossRefGoogle ScholarPubMed
Seldin, M. F., Howard, T. A. & D'Eustachio, P. (1989). Comparison of linkage maps of mouse chromosome 12 derived from laboratory strain intra-specific and Mus spretus inter-specific backcrosses. Genomics 5, 2428.CrossRefGoogle Scholar
Sola, B., Fichelson, S., Bordereaux, D., Tambourin, P. E. & Gisselbrecht, S. (1986). Fim 1 and Fim 2: two new integration regions of Friend murine leukemia virus in myeloblastic leukemias. Journal of Virology 60, 718725.CrossRefGoogle ScholarPubMed
Sola, B., Simon, D., Mattei, M.-G., Fichelson, S., Bordereaux, D., Tambourin, P. E., Guenet, J.-L. & Gisselbrecht, S. (1988). Fim 1, Fim 2/c-fms, and Fim 3, Three common integration sites of Friend murine leukemia virus in myeloblastic leukemias, map to mouse chromosome 13, 18, and 3, respectively. Journal of Virology 62, 39733978.CrossRefGoogle Scholar
Stephenson, D. A., Grant, S. G., Mullins, L. J., Scolese, A. E., O&Reilley, A. J. & Chapman, V. M. (1988). X-chromosome gene order in different Mus species crosses. Current Topics in Microbiology and Immunology 137, 1824.Google ScholarPubMed
Tripputi, P., Emanuel, B. S., Croce, C. M., Green, L. G., Stein, G. S. & Stein, J. L. (1986). Human histone genes map to multiple chromosomes. Proceedings of the National Academy of Sciences, USA 83, 31853188.CrossRefGoogle ScholarPubMed
Van Cong, N., Fichelson, S., Gross, M. S., Sola, B., Bordereaux, D., de Tand, M. F., Guilhot, S., Gisselbrecht, S., Frezal, J. & Tambourin, P. (1989). The human homologues of Fim 1, Fim 2/c-fms, and Fim 3, three retroviral integration regions involved in mouse myeloblastic leukaemias, are respectively located on chromosomes 6p23, 5q33, and 3q27. Human Genetics 81, 0257263.CrossRefGoogle Scholar
Windhorst, D. B. & Padgett, B. (1973). The Chediak–Higashi syndrome and the homologous trait in animals. Journal of Investigational Dermatology 60, 529537.CrossRefGoogle ScholarPubMed
Witkop, C. J., King, R. A. & Townsend, D. (1988). Human albinism and animal models of albinism. Pigment Cell Research, Suppl. 1, 88100.CrossRefGoogle Scholar
Zweidler, A. (1984). Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods in Cell Biology 17, 223233.CrossRefGoogle Scholar