Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T04:26:51.664Z Has data issue: false hasContentIssue false

Isolation and characterization of a new class of amino-acid-analogue-resistant mutants in Aspergillus nidulans using reduced carbon flow

Published online by Cambridge University Press:  14 April 2009

Mahavir Singh
Affiliation:
Department of Botany, University of Delhi, Delhi 110007, India
Umakant Sinha
Affiliation:
Department of Botany, University of Delhi, Delhi 110007, India
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Four recessive amino-acid-analogue-resistant mutants were isolated on a medium containing acetate as the sole carbon source and the amino acid analogues p-fluorophenylalanine and ethionine. None of the mutants showed any growth requirement. Analysis of growth on media containing an amino acid as the sole nitrogen source indicated that two mutants out of the four possess normal systems for utilization of acidic, neutral, basic and aromatic amino acids. The mutants fpa70 and fpa71 showed reduced growth on tryptophan as the sole source of nitrogen. Three new loci, identified after preliminary genetic analysis, were located on three linkage groups: one each on linkage groups I, VI and VIII.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

References

REFERENCES

Barker, C. & Lewis, D. (1970). Resistance to p-fluorophenylalanine in a mutant strain of Coprinus lagopus. Heredity (Abstr.) 25, 490.Google Scholar
Brooks, C. J., Debusk, B. G., Debusk, A. G. & Catcheside, D. E. A. (1972). A new class of p-fluorophenylalanine-resistant mutants in Neurospora crassa. Biochemical Genetics 6, 239254.CrossRefGoogle ScholarPubMed
Calhoun, D. H. & Jensen, R. A. (1972). Significance of altered carbon flow in aromatic amino acid synthesis: an approach to the isolation of regulatory mutants in Pseudomonas aeruginosa. Journal of Bacteriology 109, 365372.CrossRefGoogle Scholar
Clutterbuck, A. J. (1974). Aspergillus nidulans. In Handbook of Genetics, vol. 1, pp. 447510. Plenum Press.Google Scholar
Hannan, M. A. (1972). Mutation in Schizophyllum commune for resistance to p-fluorophenylalanine. Experientia 28, 12421243.CrossRefGoogle ScholarPubMed
Jacobson, E. S. & Metzenberg, R. L. (1967). A new gene which affects uptake of neutral and acidic amino acids in Neurospora crassa. Biochimica et Biophysica Acta 156, 140147.CrossRefGoogle Scholar
Kinghorn, J. R. & Pateman, J. A. (1975). Mutations which affect amino acid transport in Aspergillus nidulans. Journal of General Microbiology 86, 174184.CrossRefGoogle ScholarPubMed
Kinsey, J. A. & Stadler, D. R. (1969). Interaction between analogue resistance and amino acid auxotrophy in Neurospora. Journal of Bacteriology 97, 11141117.CrossRefGoogle ScholarPubMed
McCully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.CrossRefGoogle ScholarPubMed
Morpurgo, G. (1962). Resistance to p-fluorophenylalanine. Aspergillus News Letter 2, 11.Google Scholar
Pontecorvo, G. & Käfer, E. (1958). Genetic analysis based on mitotic recombination. Advances in Genetics 9, 71104.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Richmond, M. H. (1962). The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriological Reviews 26, 398420.CrossRefGoogle ScholarPubMed
Richmond, M. H. (1966). Structural analogy and chemical reactivity in the action of anti-bacterial compounds. In Biochemical Studies of Antibacterial Compounds, pp. 301335. Cambridge University Press.Google Scholar
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experientia 8, 1415.CrossRefGoogle ScholarPubMed
Singh, M. & Sinha, U. (1976). Chloral hydrate induced haploidization in Aspergillus nidulans. Experientia 32, 11441145.CrossRefGoogle ScholarPubMed
Singh, M. & Sinha, U. (1979). Mitotic haploidization and growth of Aspergillus nidulans on media containing chloral hydrate. The Journal of Cytology & Genetics 14, 14.Google Scholar
Singh, M., Srivastava, S. & Sinha, U. (1977). Carbon and nitrogen utilization and p-fluorophenylalanine resistance in Aspergillus nidulans. Transactions of Mycological Society of Japan 18, 257263.Google Scholar
Sinha, U. (1967 a). Aromatic amino acid biosynthesis and para-fluorophenylalanine resistance in Aspergillus nidulans. Genetical Research 10, 261272.CrossRefGoogle ScholarPubMed
Sinha, U. (1967 b). Genetics of aromatic amino acid biosynthesis in Aspergillus nidulans. Ph.D. thesis, University of Glasgow, U.K.Google Scholar
Sinha, U. (1969). Genetic control of the uptake of amino acids in Aspergillus nidulans. Genetics 62, 495505.CrossRefGoogle ScholarPubMed
Sinha, U. (1970). Competition between leucine and phenylalanine and its relation to p-fluorophenylalanine resistant mutations in Aspergillus nidulans. Archives für Mikrobiology 72, 308317.CrossRefGoogle ScholarPubMed
Sinha, U. (1972). Studies with p-fluorophenylalanine resistant mutants of Aspergillus nidulans. Beitrāge zur Biology der Pflanzen 48, 171180.Google Scholar
Srivastava, S. & Sinha, U. (1975). Six new loci controlling resistance to p-fluorophenylalanine in Aspergillus nidulans. Genetical Research 25, 2938.CrossRefGoogle Scholar
Stadler, D. R. (1966). Genetic control of uptake of amino acids in Neurospora. Genetics 54, 677685.CrossRefGoogle ScholarPubMed
Surdin, Y., Sly, W., Sire, J., Bordes, A. M. & Robichonszul-Majster, H. (1965). Propriétés et controle génétique du système d'accumulation des acides amines chez Saccharomyces cerevisiae. Biochimica et Biophysica Acta 107, 546566.CrossRefGoogle ScholarPubMed
Umbarger, H. E. (1971). Metabolic analogs as genetic and biochemical probes. Advances in Genetics 16, 119140.CrossRefGoogle ScholarPubMed
Verma, S. & Sinha, U. (1973). Inhibition of growth by amino acid analogues in Aspergillus nidulans. Beiträge zur Biologie der Pflanzen 49, 4758.Google Scholar
Warr, J. R. & Roper, J. A. (1965). Resistance to various inhibitors in Aspergillus nidulans. Journal of General Microbiology 40, 273281.CrossRefGoogle ScholarPubMed