Skip to main content Accessibility help
×
Home

Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance

  • K. SUJATHA (a1), P. NATARAJKUMAR (a1), G. S. LAHA (a1), B. MISHRA (a1) (a2), K. SRINIVASA RAO (a1), B. C. VIRAKTAMATH (a1), P. B. KIRTI (a3), Y. HARI (a1), S. M. BALACHANDRAN (a1), P. RAJENDRAKUMAR (a1), T. RAM (a1), S. K. HAJIRA (a1), M. SHESHU MADHAV (a1), C. N. NEERAJA (a1) and R. M. SUNDARAM (a1)...

Summary

The cultivar Ajaya (IET 8585) exhibits durable broad-spectrum resistance to bacterial blight (BB) disease of rice and is widely used as a resistance donor. The present study was carried out to decipher the genetics of BB resistance in Ajaya and map the gene(s) conferring resistance. Genetic analysis in the F2 indicated a quantitative/additive nature of resistance governed by two loci with equal effects. Linked marker analysis and allelic tests revealed that one of the resistance genes is xa5. Sequence analysis of a 244 bp region of the second exon of the gene-encoding Transcription factor IIAγ (the candidate gene for xa5) confirmed the presence of xa5. Bulked-segregant analysis (BSA) revealed the putative location of the two quantitative trait loci (QTLs)/genes associated with resistance on chromosomes 5 and 8. Composite interval mapping located the first locus on Chr. 5S exactly in the genomic region spanned by xa5 and the second locus (qtl BBR 8.1) on Chr. 8L. Owing to its differential disease reaction with a set of seven hyper-virulent isolates of Xanthomonas oryzae, a map location on Chr. 8L, which was distinct from xa13 and data from allelism tests, the second resistance locus in Ajaya was determined to be novel and was designated as xaAj. A contig map spanning xaAj was constructed in silico and the genomic region was delimited to a 13·5 kb physical interval. In silico analysis of the genomic region spanning xaAj identified four putatively expressed candidate genes, one of which could be involved in imparting BB resistance in Ajaya along with xa5.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Crop Improvement section, Directorate of Rice Research, Rajendranagar, Hyderabad, AP, India. E-mail: rms_28@rediffmail.com

References

Hide All
Anonymous (2002).Standard Evaluation System for Rice, p. 56. Manila, Philippines: International Rice Research Institute.
Blair, M. W. & McCouch, S. R. (1997). Microsatellite and sequence tagged site markers diagnostic for the rice bacterial blight resistance gene xa5. Theoretical and Applied Genetics 95, 174185.
Cheema, K. K., Grewal, N. K., Vikal, Y., Sharma, R., Lore, J. S., Das, A., Bhatia, D., Mahajan, R., Gupta, V., Bharaj, T. S. & Singh, K. (2008). A novel bacterial blight resistance gene from Oryza nivara mapped to 38 kb region on chromosome 4 and transfered to Oryza sativa L. Genetical Research 90, 111.
Chen, F., Temnykh, S., Xu, Y., Cho, Y. G. & McCouch, S. R. (1997). Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theoretical and Applied Genetics 95, 553567.
Chen, S., Liu, X., Zeng, L., Ouyang, D., Yang, J. & Zhu, X. (2011). Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv. oryzae. Theoretical and Applied Genetics 122, 13311338.
Chen, S. X., Lin, H., Xu, C. G. & Zhang, Q. (2000). Improvement of bacterial blight resistance of ‘Minghui 63’, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Science 40, 239244.
Chu, Z., Fu, B., Yang, H., Xu, C., Li, Z., Sanchez, A., Park, Y. J., Bennetzen, J. L., Zhang, Q. & Wang, S. (2006 a). Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theoretical and Applied Genetics 112, 455461.
Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., Li, X., Fu, B., Li, Z., Bennetzen, J. L., Zhang, Q. & Wang, S. (2006 b). Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes and Development 20, 12501255.
Directorate of Rice Research (1996–2009) Progress Report, 1996–2009, Volume 2. Entomology and Pathology. All Indian Coordinated Rice Imrprovement Programme (ICAR), Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, A.P., India.
Hilaire, E., Young, S. A., Willard, L. H., McGee, J. D., Sweat, T., Chittoor, J. M., Guikema, J. & Leach, J. E. (2001). Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Molecular Plant–Microbe Interactions 14, 14111419.
Huang, N., Angeles, E. R., Domingo, J., Magpantay, G., Singh, S., Zhang, G., Kumaravadivel, N., Bennett, J. & Khush, G. S. (1997). Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theoretical and Applied Genetics 95, 313320.
IRGSP (2005). The map based sequence of the rice genome. Nature 436, 793800.
Iyer, A. S. & McCouch, S. R. (2004). The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant–Microbe Interactions 17, 13481354.
Jin, X., Wang, C., Yang, Q., Jiang, Q., Fan, Y. & Liu, G. (2007). Breeding of near-isogenic line CBB30 and molecular mapping of Xa30(t), a new resistance gene to bacterial blight in rice. Scientia Agricultura Sinica 40, 10941100.
Kaku, H. (1997). The dosage effect of bacterial blight resistance genes Xa-1 and Xa-3 in rice. Rice Genetics Newsletter 14, 6467.
Kaku, H. (1999). The additive effect of bacterial blight resistance genes Xa1 and Xa4 in rice. Rice Genetics Newsletter 17, 2527.
Kameswara Rao, K., Jena, K. K. & Lakshminarasu, M. (2003). Molecular tagging of a new bacterial blight resistance gene in rice using RAPD and SSR markers. International Rice Research Newsletter 20, 1617.
Kameswara Rao, K., Randeep, R., Kouji, S., Junko, S., Pratibha, K., Hitoshi, I. & Shoshi, K. (2007). Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae. Plant Physiology and Biochemistry 45, 834850.
Kauffman, H. E., Reddy, A. P. K., Hsieh, S. P. Y. & Merca, S. D. (1973). An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Disease Reporter 56, 537541.
Khush, G. S. & Ogawa, T. (1989). Major gene for resistance to bacterial blight in rice. In: Bacterial Blight of Rice. Manila, Philippines: International Rice Research Institute, pp. 177192.
Laha, G. S., Reddy, C. S., Krishnaveni, D., Sundaram, R. M., Srinivas Prasad, M., Ram, T., Muralidharan, K. & Viraktamath, B. C. (2009). Bacterial blight of rice and its management. DRR Technical Bulletin No. 41. Rajendranagar, Hyderabad: Directorate of Rice Research (ICAR), pp. 137.
Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. G., Lincoln, S. E. & Newburg, L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics 1, 174181.
Leonard, K. J. (1993). Durable resistance in the pathosystems: maize- Northern and Southern leaf blights. In: Durability of Disease Resistance (ed. Jacobs, Th. & Parlevliet, J. E.). Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 99–114.
Li, Z. A. K., Luo, L. J., Mei, H. W., Paterson, A. H. & Zhao, X. H. (1999). A ‘defeated’ rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Molecular General Genetics 261, 5863.
McCouch, S. R., Teytelman, L., Xu, Y. B., Lobos, K. B., Clare, K., Walton, M., Fu, B. Y., Maghirang, R., Li, Z. K., Xing, Y. Z., Zhang, Q. F., Kono, I., Yano, M., Robert, F., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D. & Stein, L. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9, 257279.
Nayak, P. (1986 b). Impact of host-resistance on the variability in virulence of Xanthomonas campestris pv. oryzae. Phytopathologische Zeitschrift 116, 162166.
Ogawa, T., Lao, L., Tabien, R. E. & Khush, G. S. (1987 a). A new recessive gene for resistance to bacterial blight of rice. Rice Genetics Newsletter 4, 98–100.
Reimers, P. J. & Leach, J. E. (1991). Race specific resistance of Xanthomonas oryzae pv oryzae conferred by bacterial blight resistance gene Xa-10 in rice (Oryza sativa L) involves accumulation of lignin like substance in host tissues. Physiology and Molecular Plant Pathology 38, 3955.
Richter, T. E. & Ronald, P. C. (2000). The evolution of disease resistance genes. Plant Molecular Biology 42, 195204.
Saini, R. S., Goel, R. K. & Sharma, S. C. (1996). Genetic analysis of resistance to bacterial leaf blight (Xanthomonas oryzae pv. oryzae Ishiyama) in some rice (Oryza sativa L.) lines. Indian Journal of Genetics and Plant Breeding 56, 178181.
Seshu, D. V. (1989). Salient findings from multilocational evaluation of the International Rice Blight nursery. In: Proceedings of the International Workshop on Bacterial Blight of Rice. Manila, Philippines: International Rice Research Institute, pp. 167176.
Shanti, M. L., George, M. L. C., Vera Cruz, C. M., Bernardo, M. A., Nelson, R. J., Leung, H., Reddy, J. N. & Sridhar, R. (2001). Identification of resistance genes effective against rice bacterial blight pathogen in Eastern India. Plant Disease 85, 506512.
Shi, L. L., Wang, S. W. & Guo, Y. H. (2001). Advances on molecular breeding of rice bacterial blight resistance. Journal of Tianjin Agriculture College, China 8, 1418. (in Chinese with English abstract)
Sirisha, C., Reddy, J. N., Mishra, D., Das, K. M., Bernardo, M. A., Vera Cruz, C. M., Leung, H. & Sridhar, C. (2004). Susceptibility of IRBB 21 carrying the resistance gene Xa21 to bacterial blight. Rice Genetics Newsletter 21, 7475.
Temnykh, S., Park, N. A., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y. G., Ishii, T. & McCouch, S. R. (2000). Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics 100, 697712.
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.
Wang, C., Su, C., Zhai, H. & Wan, J. (2005). Identification of QTLs underlying resistance to a virulent strain of Xanthomonas oryzae pv. oryzae in rice cultivar DV85. Field Crops Research 91, 337343.
Wu, K. S. & Tanksley, S. D. (1993). PFGE analysis of the rice genome: estimation of the fragment sizes, organization of the repetitive sequences and relationships between genetic and physical distances. Plant Molecular Biology Reporter 23, 243254.
Yang, B., Sugio, A. & White, F. F. (2006). Os8N3 is a host disease susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences USA 103, 1050310508.
Yang, D., Sanchez, A., Khush, G. S., Zhu, Y. & Huang, N. (1998). Construction of a BAC contig containing the xa5 locus in rice. Theoretical and Applied Genetics 97, 11201124.
Yang, Z., Sun, X., Wang, S. & Zhang, Q. (2003). Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theoretical and Applied Genetics 106, 14671472.
Yoshimura, S., Umehara, Y., Kurata, N., Nagamuva, Y., Sasaki, T., Minobe, Y. & Iwata, N. (1996). Identification of YAC clone carrying the Xa1 allele, a bacterial blight resistance gene in rice. Theoretical and Applied Genetics 93, 117122.
Yoshitola, J., Krishnaveni, D., Reddy, A. P. K. & Sonti, R. V. (1997). Genetic diversity within the population of Xanthomonas oryzae pv oryzae in India. Phytopathology 87, 760765.
Young, S. A., Guo, A., Guikema, J. A., White, F. F. & Leach, J. E. (1995). Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiology 107, 13331341.
Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics 136, 14571468.
Zheng, K., Huang, N., Bennett, J. & Khush, G. S. (1995). PCR-based marker assisted selection in rice breeding. IRRI discussion paper series No. 12. Manila, Philippines: International Rice Research Institute.
Type Description Title
UNKNOWN
Supplementary materials

Sujatha Supplementary Material
Figure.ppt

 Unknown (103 KB)
103 KB
WORD
Supplementary materials

Sujatha Supplementary Material
Table1.doc

 Word (31 KB)
31 KB
EXCEL
Supplementary materials

Sujatha Supplementary Material
Table2.xls

 Excel (276 KB)
276 KB
EXCEL
Supplementary materials

Sujatha Supplementary Material
Table3.xls

 Excel (184 KB)
184 KB

Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance

  • K. SUJATHA (a1), P. NATARAJKUMAR (a1), G. S. LAHA (a1), B. MISHRA (a1) (a2), K. SRINIVASA RAO (a1), B. C. VIRAKTAMATH (a1), P. B. KIRTI (a3), Y. HARI (a1), S. M. BALACHANDRAN (a1), P. RAJENDRAKUMAR (a1), T. RAM (a1), S. K. HAJIRA (a1), M. SHESHU MADHAV (a1), C. N. NEERAJA (a1) and R. M. SUNDARAM (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed