Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-24T19:24:04.440Z Has data issue: false hasContentIssue false

Gross karyotypic change and evolution in North American cyprinid fishes*

Published online by Cambridge University Press:  14 April 2009

J. R. Gold
Affiliation:
Genetics Section, Texas A & M University, College Station, Texas 77843, U.S.A.
W. D. Womac
Affiliation:
Genetics Section, Texas A & M University, College Station, Texas 77843, U.S.A.
F. H. Deal
Affiliation:
Genetics Section, Texas A & M University, College Station, Texas 77843, U.S.A.
J. A. Barlow Jr
Affiliation:
Genetics Section, Texas A & M University, College Station, Texas 77843, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have examined karyotypes of five species from five genera of cyprinid fishes endemic to the central and southeastern United States: Campostoma anomalum, Hybognathus hayi, Hybopsis aestivalis, Phenacobius mirabilis, and Pimephales vigilax. All five have a diploid chromosome number of 50. Variation in chromosome arm number among the five species is slight, and may be due to measurement error or technique difficulties. The karyotypes of 40 North American cyprinids are now known. All but five species have 50 (diploid) chromosomes. Variation in chromosome arm number also appears minimal; one-armed chromosomes (centromeres subterminal to terminal) normally comprise only a small fraction of the karyotype, and each species has roughly the same number of chromosomes with median and submedian centromeres. The conservatism of gross chromosomal evolution among these fishes is not in accord with recent hypotheses which suggest that progressive evolution of organisms may depend to a large degree on gene rearrangement brought about by gross chromosomal restructuring. Cyprinids are a highly speciose group in North America, and there is relatively strong morphological differentiation among species. The present data suggest that gross chromosomal restructuring may play only a minor role in the speciation and evolution of these fishes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Avise, J. C. (1977 a). Genie heterozygosity and rate of speciation. Paleobiology 3, 422432.CrossRefGoogle Scholar
Avise, J. C. (1977 b). Is evolution gradual or rectangular? Evidence from living fishes. Proceedings of the National Academy of Sciences (U.S.A.) 74, 50835087.CrossRefGoogle ScholarPubMed
Avise, J. C. & Gold, J. R. (1977). Chromosomal divergence and rates of speciation in two families of North American fishes. Evolution 31, 113.CrossRefGoogle Scholar
Bush, G. L., Case, S. M., Wilson, A. C. & Patton, J. L. (1977). Rapid speciation and chromosomal evolution in mammals. Proceedings of the National Academy of Sciences (U.S.A.) 74, 39423946.CrossRefGoogle ScholarPubMed
Campos, H. H. & Hubbs, C. (1973). Taxonomic implications of the karyotype of Opsopoeodua emiliae. Copeia. (1973), 161163.CrossRefGoogle Scholar
Denton, T. E. & Howell, W. M. (1969). A technique for obtaining chromosomes from the scale epithelium of teleost fishes. Copeia (1969), 392393.CrossRefGoogle Scholar
Gold, J. R. (1974). A fast and easy method for chromosome karyotyping in adult teleosts. The Progressive Fish – Culturalist 36, 169171.CrossRefGoogle Scholar
Gold, J. R. & Avise, J. C. (1977). Cytogenetic studies in North American minnows (Cyprinidae). I. Karyology of nine California genera. Copeia (1977), 541549.CrossRefGoogle Scholar
Gravell, M. & Malsberger, R. G. (1965). A permanent cell line from the fathead minnow (Pimephales promelas). Annals of the New York Academy of Sciences 126, 555565.CrossRefGoogle ScholarPubMed
Greenfield, D. W. & Greenfield, T. (1972). Introgressive hybridization between Gila orcutti and Hesperoleucus symmetricus (Pisces: Cyprinidae) in the Cuyama River basin, California: I. Meristics, morphometrics, and breeding. Copeia (1972), 849859.CrossRefGoogle Scholar
Greenfield, D. W., Abdel-Hameed, F., Deckert, G. D. & Flinn, R. R. (1973). Hybridization between Chrosomus erythrogaster and Notropis cornutus (Pisces: Cyprinidae). Copeia (1973), 5459.CrossRefGoogle Scholar
Howell, W. M. & Villa, J. (1976). Chromosomal homogeneity in two sympatric cyprinid fishes of the genus Rhinichthys. Copeia (1976), 112116.CrossRefGoogle Scholar
Kimmel, P. G. (1975). Fishes of the Miocene – Pliocene Deer Butte formation, southeast Oregon. University of Michigan Museum of Paleontology Papers on Paleontology 14, 6987.Google Scholar
King, M. C. & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science 188, 107116.CrossRefGoogle ScholarPubMed
Kluge, A. G. & Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Systematic Zoology 18, 132.CrossRefGoogle Scholar
Legendre, P. & Steven, D. M. (1969). Denombrement des chromosomes chez quelques cyprins. Naturaliste Canada 96, 913918.Google Scholar
Levan, A., Fredga, K. & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52, 201220.CrossRefGoogle Scholar
Levin, D. L. & Wilson, A. C. (1976). Rates of evolution in seed plants: Net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences (U.S.A.) 73, 20862090.CrossRefGoogle ScholarPubMed
Lieppman, M. & Hubbs, C. (1969). A karyological analysis of two cyprinid fishes. Notemigonus crysoleucas and Notropis lutrensis. Texas Reports on Biology and Medicine 27, 427435.Google ScholarPubMed
McPhail, J. D. & Jones, R. L. (1966). A simple technique for obtaining chromosomes from teleost fishes. Journal of the Fisheries Research Board of Canada 23, 767768.CrossRefGoogle Scholar
Miller, R. R. (1959). Origin and affinities of the freshwater fish fauna of Western North America. Zoogeography. American Association for the Advancement of Science Publication 51, 187222.Google Scholar
Miller, R. R. (1965). Quaternary freshwater fishes of North America. In The Quaternary of the United States (ed. Wright, H. E. Jr. and Frey, D. G.), pp. 569581. New Jersey: Princeton University Press, Princeton.Google Scholar
Prager, E. M. & Wilson, A. C. (1975). Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution. Proceedings of the National Academy of Sciences (U.S.A.) 72, 200204.CrossRefGoogle ScholarPubMed
Savage, D. E. (1975). Cenozoic – the primate episode. In Approaches to Primate Paleobiology (ed. Szalay, F. S.). Contributions to Primatology 5, 227.Google Scholar
Smith, G. R. (1975). Fishes of the Pliocene Glenns Ferry formation, southeast Idaho. University of Michigan Museum of Paleontology Papers on Paleontology 14, 168.Google Scholar
Uyeno, T. & Miller, R. R. (1973). Chromosomes and the evolution of the Plagopterin fishes (Cyprinidae) of the Colorado River system. Copeia (1973), 776782.CrossRefGoogle Scholar
Uyeno, T. & Smith, G. R. (1972). Tetraploid origin of the karyotype of Catostomid fishes. Science 159, 644646.CrossRefGoogle Scholar
White, M. J. D. (1973). Animal Cytology and Evolution. Cambridge University Press, William Clowes and Sons, Ltd, London.Google Scholar
Wilson, A. C. (1976). Gene regulation in evolution. In Molecular Evolution (ed. Ayala, F. J.), pp. 225234. Sunderland, Mass.: Sinauer Assoc., Inc.Google Scholar
Wilson, A. C., Maxson, L. R. & Sarich, V. M. (1974 a). Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proceedings of the National Academy of Sciences (U.S.A.) 71, 28432847.CrossRefGoogle ScholarPubMed
Wilson, A. C., Sarich, V. M. & Maxson, L. R. (1974 b). The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proceedings of the National Academy of Sciences (U.S.A.) 71, 30283030.CrossRefGoogle ScholarPubMed
Wilson, A. C., Bush, G. L., Case, S. M. & King, M. C. (1975). Social structuring of mammalian populations and rate of chromosomal evolution. Proceedings of the National Academy of Sciences (U.S.A.) 72, 50615065.CrossRefGoogle ScholarPubMed