Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T03:43:11.871Z Has data issue: false hasContentIssue false

Genetic analysis of nystatin-resistant mutants of Saccharomyces cerevisiae

Published online by Cambridge University Press:  14 April 2009

V. Karunakaran
Affiliation:
Department of Applied Microbiology, University of Strathclyde, Glasgow Gl 1XW
J. R. Johnston
Affiliation:
Department of Applied Microbiology, University of Strathclyde, Glasgow Gl 1XW

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Primary genes, designated as NYSA, NYSD, NYSE, NYSF (dominant) and nysB, nysC (recessive) are responsible for resistance to nystatin ranging from 30 to 80 u/ml. A dominant modifier gene increases the resistance conferred by NYSF from 80 to 140 u/ml and a recessive modifier gene enhances resistance due to NYSA by 20 u/ml (from 40 to 60 u/ml). One nystatin-resistant mutant is apparently cytoplasmic and this ‘mutation’ suppresses specifically the action of modifying factors which increase the level of resistance conferred by the NYSA gene. Interaction resulting in additive levels of resistance is shown by gene NYSD in combination with each of the genes nysB, nysC and NYSE. A model of step-wise increases in resistance due to polygenic primary genes and nuclear and cytoplasmic modifying factors is proposed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Ahmed, K. A. & Woods, R. A. (1967). A genetic analysis of resistance to nystatin in Saccharomyces cerevisiae. Genetical Research 9, 179193.CrossRefGoogle ScholarPubMed
Archer, D. B. & Gale, E. F. (1975). Antagonism by sterols of the action of amphotericin and filipin on the release of potassium ions from Candida albicans and Mycoplasma mycoides subsp. capri. Journal of General Microbiology 90, 187190.CrossRefGoogle ScholarPubMed
Athar, M. A. & Winner, H. I. (1971). The development of resistance by Candida species to polyene antibiotics in vitro. Journal of Medical Microbiology 4, 505517.CrossRefGoogle ScholarPubMed
Bard, M. (1972). Biochemical and genetic aspects of nystatin resistance in Saccharomyces cerevisiae. Journal of Bacteriology 111, 649657.CrossRefGoogle ScholarPubMed
Coulson, J. F. (1970). Genetic analysis of resistance to polyenes in yeast. Ph.D. thesis, University of Strathclyde.Google Scholar
Darlington, L. D. & Mather, K. (1949). The Elements of Genetics, p. 410. London: George Allen and Unwin.Google Scholar
Demerec, M. (1945). Production of Staphylococcus strains resistant to various concentrations of penicillin. Proceedings of the National Academy of Sciences, U.S.A. 31, 1624.CrossRefGoogle ScholarPubMed
Demerec, M. (1948). Origin of bacterial resistance to antibiotics. Journal of Bacteriology 56, 6374.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1955). Evolution, Genetics and Man, pp. 4042. New York: John Wiley.Google Scholar
Farris, J. S. & Gilmore, R. A. (1974). Genetics of flocculence in Saccharomyces cerevisiae. Genetics 77, s21–s22.Google Scholar
Grindle, M. (1973). Sterol mutants of Neurospora crassa: their isolation, growth characteristics and resistance to polyenes. Molecular and General Genetics 120, 283290.CrossRefGoogle Scholar
Grindle, M. (1974). The efficacy of various mutagens and polyene antibiotics for the induction and isolation of sterol mutants of Neurospora crassa. Molecular and general Genetics 130, 8190.CrossRefGoogle ScholarPubMed
Hamilton-Miller, J. M. T. (1972 a). Sterols from polyene resistant mutants of Candida albicans. Journal of General Microbiology 73, 201203.CrossRefGoogle ScholarPubMed
Hamilton-Miller, J. M. T. (1972 b). Physiological properties of mutagen-induced variants of Candida albicans resistant to polyene antibiotics. Journal of Medical Microbiology 5, 425440.CrossRefGoogle Scholar
Hamilton-Miller, J. M. T. (1974). Fungal sterols and the mode of action of polyene antibiotics. Advances in Applied Microbiology 17, 109134.CrossRefGoogle ScholarPubMed
Hsuchen, C. C. & Feingold, D. S. (1974). Two types of resistance to polyene antibiotics in Candida albicans. Nature 251, 656659.CrossRefGoogle ScholarPubMed
Johnston, J. R. (1971). New loci for resistance to polyene antibiotics in yeast. Microbial Genetics Bulletin 33, 9.Google Scholar
Karunakaran, V. (1974). Genetic analysis and stability of some nystatin-resistant mutants of Saccharomyces cerevisiae. Ph.D. thesis, University of Strathclyde.Google Scholar
Karunakaran, V. & Johnston, J. R. (1973). Further genetic analysis of nystatin resistance in yeast. Microbial Genetics Bulletin 35, 1011.Google Scholar
Karunakaran, V. & Johnston, J. R. (1974). Death of nystatin-resistant mutants of Saccharomyces cerevisiae during refrigeration. Journal of General Microbiology 81, 255256.Google ScholarPubMed
Kitajima, Y., Sekiya, T. & Nozawa, Y. (1976). Freeze-fracture ultrastructural alterations induced by filipin, pimaricin, nystatin and amphotericin B in the plasma membrane of Epidermophyton, Saccharomyces and red blood cells. A proposal of models for polyeneergosterol complex-induced membrane lesions. Biochimica et Biophysica Acta 445, 452465.CrossRefGoogle Scholar
Lewis, C. W., Johnston, J. R. & Martin, P. A. (1976). The genetics of yeast flocculation. Journal of the Institute of Brewing 82, 158160.CrossRefGoogle Scholar
Molzahn, S. W. & Woods, R. A. (1972). Polyene resistance and the isolation of sterol mutants of Saccharomyces cerevisiae. Journal of General Microbiology 72, 339348.CrossRefGoogle Scholar
Morris, D. C., Safe, S. & Subden, R. E. (1974). Detection of the ergosterol and episterol isomers lichesterol and fecosterol in nystatin-resistant mutants of Neurospora crassa. Biochemical Genetics 12, 459466.CrossRefGoogle ScholarPubMed
Mortimer, R. K. & Hawthorne, D. C. (1969). Yeast genetics. In The Yeasts, vol. I (ed. Rose, A. H. and Harrison, J. S.), pp. 386460. London, New York: Academic Press.Google Scholar
Patel, P. V. (1968). Genetic studies on resistance to nystatin and amphotericin B in yeast. Ph.D. thesis, University of Strathclyde.Google Scholar
Patel, P. V. & Johnston, J. R. (1968). Dominant mutation for nystatin resistance in yeast. Applied Microbiology 16, 164165.CrossRefGoogle ScholarPubMed
Patel, P. V. & Johnston, J. R. (1971). Kinetics of action of nystatin on yeast. Journal of Applied Bacteriology 34, 449458.CrossRefGoogle ScholarPubMed
Thompson, E. D., Starr, P. R. & Parks, L. W. (1971). Sterol accumulation in a mutant of Saccharomyces cerevisiae defective in ergosterol production. Biochemical & Biophysical Research Communications 43, 13041309.CrossRefGoogle Scholar
Wilkie, D. & Lee, B. K. (1965). Genetic analysis of actidione resistance in Saccharomyces cerevisiae. Genetical Research 6, 130138.CrossRefGoogle ScholarPubMed
Woods, R. A. (1971). Nystatin-resistant mutants of yeast: alterations in sterol content. Journal of Bacteriology 108, 6973.CrossRefGoogle ScholarPubMed
Woods, R. A., Bard, M., Jackson, I. E. & Drutz, D. J. (1974). Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. Journal of Infectious Diseases 129, 5358.CrossRefGoogle ScholarPubMed