Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T00:47:53.026Z Has data issue: false hasContentIssue false

Forward and back mutation in the pyr3 region of Neurospora. I. Mutations from arginine dependence to prototrophy*

Published online by Cambridge University Press:  14 April 2009

José L. Reissig
Affiliation:
Medical Research Council Induced Mutagenesis Group, Institute of Animal Genetics, Edinburgh
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A system for the screening of reversions in an arginine-dependent strain of Neurospora has been developed.

Reversion resulted from any one of three events:

(a) Back mutation of the original arg gene.

(b) Forward mutation at the pyr locus. This has the pleiotropic effect of suppressing arg while determining a pyrimidine requirement. Interaction with the unmutated nuclei of the same conidium permits growth on minimal medium.

(c) Forward mutation at the pyr locus to alleles of intermediate activity. These alleles suppress arg, but do not create a pyrimidine requirement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1960

References

REFERENCES

Beadle, G. W. & Tatum, E. L. (1945). Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Amer. J. Bot. 32, 678686.CrossRefGoogle Scholar
Crow, J. F. (1952). Dominance and overdominance. In Heterosis (editor, Gowen, J. W.), pp. 282297. Iowa: Iowa State College Press.Google Scholar
de Serres, F. J. (1958). Studies with purple adenine mutants in Neurospora crassa. III. Reversion of X-ray-induced mutants. Genetics, 43, 187206.CrossRefGoogle ScholarPubMed
Emerson, S. (1952). Biochemical models of heterosis in Neurospora. In Heterosis (editor, Gowen, J. W.), pp. 199217. Iowa: Iowa State College Press.Google Scholar
Freese, E. T. (1959). The difference between spontaneous and base-analogue induced mutations of phage T4. Proc. nat. Acad. Sci., Wash., 45, 622633.CrossRefGoogle ScholarPubMed
Grigg, G. W. (1952). Back mutation assay method in micro-organisms. Nature, Lond., 169, 98100.CrossRefGoogle ScholarPubMed
Heinrich, M. R., Dewey, V. C. & Kidder, G. W. (1954). Citrulline as a precursor of pyrimidines, J. Amer. chem. Soc., 76, 31023103.CrossRefGoogle Scholar
Kølmark, G. & Westergaard, M. (1952). Validity of the Neurospora back-mutation test, Nature, Lond., 169, 626.CrossRefGoogle ScholarPubMed
Lederberg, J. (1957). Discussion following Hayes' paper in Ciba Foundation Symposium on Drug Resistance in Micro-organisms (editors, Wolstenholme, G. E. W. and O'Connor, C. M.), pp. 205208. London: J. & A. Churchill Ltd.Google Scholar
Mitchell, H. K. (1953). Growth factors in relation to studies of genetics of microorganisms. 6th Int. Gongr. Microbiol., Symp. on Nutrition and Growth Factors, pp. 7596.Google Scholar
Mitchell, M. B. & Mitchell, H. K. (1952). Observations on the behaviour of suppressors in Neurospora. Proc. nat. Acad. Sci., Wash., 38, 205214CrossRefGoogle ScholarPubMed
Mitchell, M. B. & Mitchell, H. K. (1954). A partial map of linkage group D in Neurospora crassa. Proc. nat. Acad. Sci., Wash., 40, 436440.CrossRefGoogle Scholar
Mitchell, M. B. & Mitchell, H. K. (1956). Tests for non-allelism at the pyrimidine-3 locus of Neurospora. Genetics, 41, 319326.CrossRefGoogle ScholarPubMed
Mitchell, M. B., Pittenger, T. H. & Mitchell, H. K. (1952). Pseudo-wild types in Neurospora crassa. Proc. nat. Acad. Sci., Wash., 38, 569580.CrossRefGoogle Scholar
Munkres, K. D., Woodward, V. W. & Suyama, V. (1958). Metabolic analysis of certain pyrimidine-requiring mutants of Neurospora, Proc. 10th Int. Congr. Genet. 2, 200.Google Scholar
Reichard, P. (1959). The enzymic synthesis of pyrimidines. Advanc. Enzymol. 21, 263294.Google Scholar
Reissig, J. L. (1956). Replica plating with Neurospora crassa. Microb. Genet. Bull. 14, 3132.Google Scholar
Reissig, J. L. (1958). A suppressor of citrulline dependence in Neurospora: a case of single gene heterosis. Heredity, 12, 397.Google Scholar
Reissig, J. L. (1959). Forward and back-mutation at the pyr3 locus of Neurospora. Heredity, 13, 144.Google Scholar
Reissig, J. L. (1960). Changes in the sensitivity of conidia to UV. Microb. Genet. Bull. 17, 18.Google Scholar
Srb, A. M. (1949). Lack of effect of carbamyl-L-glutamic acid on the growth of certain arginineless mutants of Neurospora. Arch. Biochem. 23, 495496.Google ScholarPubMed
Srb, A. M. (1958). Mutations in yeast produced by treatment with beta-propiolactone. Comptes Rendus de Séances et Rapports et Communications Déposés lors du Congrès dans les Sections 9 et 10, 8ème Congr. Int. Botan., Paris, 1954, pp. 140143.Google Scholar
Srb, A. M. & Horowitz, N. H. (1944). The ornithine cycle in Neurospora and its genetic control. J. biol. Chem. 154, 129139.CrossRefGoogle Scholar
Stadler, D. R. (1956). Heritable factors influencing crossing over frequency in Neurospora. Microb. Genet. Bull. 13, 3234.Google Scholar
Stevens, W. L. (1942). Accuracy of mutation rates. J. Genet. 43, 301307.CrossRefGoogle Scholar
Strauss, B. S. (1951). Studies on the vitamin B6-requiring, pH sensitive mutants of Neurospora crassa. Arch. Biochem. 30, 292305.Google ScholarPubMed
Westergaard, M. (1960). Chemical mutagenesis as a tool in macromolecular genetics. In Chemische Mutagenese, Erwin-Baur Gedächtnisvorlesungen I, 1959. Abhandlungen d. Deutschen Akademie d. Wissenschaften z. Berlin, Klasse für Medizin, 1.Google Scholar
Westergaard, M. & Mitchell, H. K. (1947). Neurospora V. A synthetic medium favoring sexual reproduction. Amer. J. Bot. 34, 573577.CrossRefGoogle Scholar