Skip to main content Accessibility help
×
Home

Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster

  • AKIHIKO YAMAMOTO (a1) (a2), ROBERT R. H. ANHOLT (a1) (a2) (a3) and TRUDY F. C. MACKAY (a2) (a3)

Summary

Epistasis is an important feature of the genetic architecture of quantitative traits. Previously, we showed that startle-induced locomotor behaviour of Drosophila melanogaster, a critical survival trait, is highly polygenic and exhibits epistasis. Here, we characterize epistatic interactions among homozygous P-element mutations affecting startle-induced locomotion in the Canton-S isogenic background and in 21 wild-derived inbred genetic backgrounds. We find pervasive epistasis for pairwise combinations of homozygous P-element insertional mutations as well as for mutations in wild-derived backgrounds. In all cases, the direction of the epistatic effects is to suppress the mutant phenotypes. The magnitude of the epistatic interactions in wild-derived backgrounds is highly correlated with the magnitude of the main effects of mutations, leading to phenotypic robustness of the startle response in the face of deleterious mutations. There is variation in the magnitude of epistasis among the wild-derived genetic backgrounds, indicating evolutionary potential for enhancing or suppressing effects of single mutations. These results provide a partial glimpse of the complex genetic network underlying the genetic architecture of startle behaviour and provide empirical support for the hypothesis that suppressing epistasis is the mechanism underlying genetic canalization of traits under strong stabilizing selection. Widespread suppressing epistasis will lead to underestimates of the main effects of quantitative trait loci (QTLs) in mapping experiments when not explicitly accounted for. In addition, suppressing epistasis could lead to underestimates of mutational variation for quantitative traits and overestimates of the strength of stabilizing selection, which has implications for maintenance of variation of complex traits by mutation–selection balance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Trudy F. C. Mackay. Department of Genetics, Campus Box 7614, North Carolina State University, Raleigh, NC 27695-7614, USA. Tel: 919 515 5810. Fax: 919 515 3355. e-mail: trudy_mackay@ncsu.edu

References

Hide All
Altshuler, D., Daly, M. J. & Lander, E. S. (2008). Genetic mapping in human disease. Science 322, 881888.
Anholt, R. R. H. & Mackay, T. F. C. (2004). Genetic analysis of complex behaviours in Drosophila. Nature Reviews Genetics 5, 838849.
Ayroles, J. F., Carbone, M. A., Stone, E. A., Jordan, K. W., Lyman, R. F., Magwire, M. M., Rollmann, S. M., Duncan, L. H., Lawrence, F., Anholt, R. R. H. & Mackay, T. F. C. (2009). Systems genetics of complex traits in Drosophila melanogaster. Nature Genetics 41, 299307.
Bellen, H. J., Levis, R. W., Liao, G., He, Y., Carlson, J. W., Tsang, G., Evans-Holm, M., Hiesinger, P. R., Schulze, K. L., Rubin, G. M., Hoskins, R. A. & Spradling, A. C. (2004). The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761781.
Brockmann, G. A., Kratzsch, J., Haley, C. S., Renne, U., Schwerin, M. & Karle, S. (2000). Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i×DBA/2 mice. Genome Research 10, 19411957.
Carlborg, O., Jacobsson, L., Ahgren, P., Siegel, P. & Andersson, L. (2006). Epistasis and the release of genetic variation during long-term selection. Nature Genetics 38, 418420.
Cheverud, J. M., Vaughn, T. T., Pletscher, L. S., Peripato, A. C., Adams, E. S., Erikson, C. F., & King-Ellison, K. J. (2001). Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Mammalian Genome 12, 3–12.
Clark, A. G. & Wang, L. (1997). Epistasis in measured genotypes: Drosophila P-element insertions. Genetics 147, 157163.
Dilda, C. L. & Mackay, T. F. C. (2002). The genetic architecture of Drosophila sensory bristle number. Genetics 162, 16551674.
Edwards, A. C. & Mackay, T. F. C. (2009). Quantitative trait loci for aggressive behaviour in Drosophila melanogaster. Genetics 182, 889897.
Eshed, Y. & Zamir, D. (1996). Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143, 18071817.
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, 4/e. Reading, MA: Addison Wesley Longman.
Fedorowicz, G. M., Fry, J. D., Anholt, R. R. H. & Mackay, T. F. C. (1998). Epistatic interactions between smell-impaired loci in Drosophila melanogaster. Genetics 148, 18851891.
Flatt, T. (2005). The evolutionary genetics of canalization. Quarterly Review of Biology 80, 287316.
Flint, J. & Mackay, T. F. C. (2009). Genetic architecture of quantitative traits in mice, flies and humans. Genome Research 19, 723733.
Gibson, G. & Wagner, G. (2000). Canalization in evolutionary genetics: a stabilising theory? BioEssays 22, 372380.
Gros, P. A., Le Nagard, H. & Tenaillon, O. (2009). The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics 182, 277293.
Gurganus, M. C., Nuzhdin, S. V., Leips, J. W. & Mackay, T. F. C. (1999). High resolution mapping of quantitative trait loci affecting sternopleural bristle number in Drosophila melanogaster. Genetics 152, 15851604.
Hermisson, J., Hansen, T. F. & Wagner, G. P. (2003). Epistasis in polygenic traits and the evolution of genetic architecture under stabilising selection. American Naturalist 161, 708734.
Hermisson, J. & Wagner, G. P. (2004). The population genetic theory of hidden variation and genetic robustness. Genetics 168, 22712284.
Jordan, K. W., Carbone, M. A., Yamamoto, A., Morgan, T. J. & Mackay, T. F. C. (2007). Quantitative genomics of locomotor behaviour in Drosophila melanogaster. Genome Biology 8, R172.
Jordan, K. W., Morgan, T. J. & Mackay, T. F. C. (2006). Quantitative trait loci for locomotor behaviour in Drosophila melanogaster. Genetics 174, 271284.
Klingenberg, C. P., Leamy, L. J. & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics 166, 19091921.
Klingenberg, C. P., Leamy, L. J., Routman, E. J. & Cheverud, J. M. (2001). Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics 157, 785802.
Kroymann, J. & Mitchell-Olds, T. (2005). Epistasis and balanced polymorphism influencing complex trait variation. Nature 435, 9598.
Leips, J. & Mackay, T. F. C. (2000). Quantitative trait loci for lifespan in Drosophila melanogaster: interactions with genetic background and larval density. Genetics 155, 17731788.
Leips, J. & Mackay, T. F. C. (2002). The complex genetic architecture of Drosophila life span. Experimental Aging Research 28, 361390.
Long, A. D., Mullaney, S. L., Reid, L. A., Fry, J. D., Langley, C. H. & Mackay, T. F. C. (1995). High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139, 12731291.
Lukacsovich, T., Asztalos, Z., Awano, W., Baba, K., Kondo, S., Niwa, S. & Yamamoto, D. (2001). Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157, 727742.
Mackay, T. F. C., Fry, J. D., Lyman, R. F. & Nuzhdin, S. V. (1994). Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains. Genetics 136, 937951.
Mackay, T. F. C., Lyman, R. F. & Hill, W. G. (1995). Polygenic mutation in Drosophila melanogster: non-linear divergence among unselected strains. Genetics 139, 849859.
Mackay, T. F. C., Lyman, R. F. & Lawrence, F. (2005). Polygenic mutation in Drosophila melanogaster: mapping spontaneous mutations affecting sensory bristle number. Genetics 170, 17231735.
Mackay, T. F. C., Richards, S. & Gibbs, R. (2008). Proposal to Sequence a Drosophila Genetic Reference Panel: A Community Resource for the Study of Genotypic and Phenotypic Variation. Available fromhttp://flybase.org/static_pages/news/wpapers.html
Mackay, T. F. C., Roshina, N. V., Leips, J. W. & Pasyukova, E. G. (2006). Complex genetic architecture of Drosophila longevity. In Handbook of the Biology of Aging, 6th edn (ed. Masaro, E. J. & Austad, S. N.), pp. 181216. Academic Press, Burlington, MA, USA.
Mackay, T. F. C., Stone, E. A. & Ayroles, J. F. (2009). The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics 10, 565577.
Phillips, P. C. (2008). Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics 9, 855867.
Proulx, S. R. & Phillips, P. C. (2005). The opportunity for canalization and the evolution of genetic networks. American Naturalist 165, 147162.
Rollmann, S. M., Magwire, M. M., Morgan, T. J., Özsoy, E. D., Yamamoto, A., Mackay, T. F. C. & Anholt, R. R. H. (2006). Pleiotropic fitness effects of the Tre1/Gr5a region in Drosophila. Nature Genetics 38, 824829.
Sambandan, D., Yamamoto, A., Fanara, J. J., Mackay, T. F. C. & Anholt, R. R. H. (2006). Dynamic genetic interactions determine odor-guided behaviour in Drosophila melanogaster. Genetics 174, 13491363.
Shao, H., Burrage, L. C., Sinasac, D. S., Hill, A. E., Ernest, S. R., O'Brien, W., Courtland, H. W., Jepsen, K. J., Kirby, A., Kulbokas, E. J., Daly, M. J., Broman, K. W., Lander, E. S. & Nadeau, J. H. (2008). Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proceedings of the National Academy of Sciences of the USA 105, 1991019914.
Siegal, M. L. & Bergman, A. (2002). Waddington's canalization revisited: developmental stability and evolution. Proceedings of the National Academy of Sciences of the USA 99, 1052810532.
Sinha, H., David, L., Pascon, R. C., Clauder-Münster, S., Krishnakumar, S., Nguyen, M., Shi, G., Dean, J., Davis, R. W., Oefner, P. J., McCusker, J. H. & Steinmetz, L. M. (2008). Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180, 16611670.
Stam, L. F. and Laurie, C. C. (1996). Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144, 15591564.
Steinmetz, L. M., Sinha, H., Richards, D. R., Spiegelman, J. I., Oefner, P. J., McCusker, J. H. & Davis, R. W. (2002). Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326330.
Tweedie, S., Ashburner, M., Falls, K., Leyland, P., McQuilton, P., Marygold, S., Millburn, G., Osumi-Sutherland, D., Schroeder, A., Seal, R., Zhang, H. & The FlyBase Consortium. (2009). FlyBase: enhancing Drosophila gene ontology annotations. Nucleic Acids Research 37, D555D559.
Van Swinderen, B. & Greenspan, R. J. (2005). Flexibility in a gene network affecting a simple behaviour in Drosophila melanogaster. Genetics 169, 21512163.
Waddington, C. H. (1957). The Strategy of the Genes. New York: McMillan.
Weber, K., Eisman, R., Higgins, S., Morey, L., Patty, A., Tausek, M. & Zeng, Z. B. (2001). An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster. Genetics 159, 10451057.
Weber, K., Eisman, R., Morey, L., Patty, A., Sparks, J., Tausek, M. & Zeng, Z. B. (1999). An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster. Genetics 153, 773786.
Workman, M. S., Leamy, L. J., Routman, E. J. & Cheverud, J. M. (2002). Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics 160, 15731586.
Wright, S. (1977). Evolution and the Genetics of Populations. Volume 3. Experimental Results and Evolutionary Deductions. Chicago, IL: University of Chicago.
Yamamoto, A., Zwarts, L., Callaerts, P., Norga, K., Mackay, T. F. C. & Anholt, R. R. H. (2008). Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 105, 1239312398.
Yi, N., Zinniel, D. K., Kim, K., Eisen, E. J., Bartolucci, A., Allison, D. B. & Pomp, D. (2006). Bayesian analyses of multiple epistatic QTL models for body weight and body composition in mice. Genetical Research 87, 4560.
Type Description Title
WORD
Supplementary materials

Yamamoto supplementary material
Figure 1.doc

 Word (50 KB)
50 KB
WORD
Supplementary materials

Yamamoto supplementary material
Figure 2.doc

 Word (54 KB)
54 KB
WORD
Supplementary materials

Yamamoto supplementary material
Table 1.doc

 Word (81 KB)
81 KB
WORD
Supplementary materials

Yamamoto supplementary material
Table 2.doc

 Word (48 KB)
48 KB
WORD
Supplementary materials

Yamamoto supplementary material
Table 3.doc

 Word (59 KB)
59 KB
WORD
Supplementary materials

Yamamoto supplementary material
Table 4.doc

 Word (60 KB)
60 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed