Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T15:46:11.263Z Has data issue: false hasContentIssue false

Effects of the rex gene of phage λ on lysogeny

Published online by Cambridge University Press:  14 April 2009

J. H. Campbell
Affiliation:
Department of Anatomy, School of Medicine, University of California, Los Angeles, California 90024, U.S.A.
D. Dykhuizen
Affiliation:
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, U.S.A.
B. G. Rolfe
Affiliation:
Genetics Department, Research School of Biological Sciences, The Australian National University, Canberra, A.C.T.-2601, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mutations in the rex gene of phage λ affect lysogeny. λrex phages have an increased probability of forming abortive lysogens instead of stable lysogens. In addition, established lysogens produce elevated levels of cured cells during anaerobic but not aerobic growth. It is suggested that the function of the rex gene is related to excision or repressor function.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Avitabile, A., Carlomagno-Cerillo, M. S., Favre, R. & Blasi, F. (1972). Isolation of transducing bacteriophages for the histidine and isoleucine-valine operons in Escherichia coli K-12. Journal of Bacteriology 112, 4047.CrossRefGoogle ScholarPubMed
Campbell, J. H. & Rolfe, B. G. (1975). Evidence for a dual control of the initiation of host-cell lysis caused by phage lambda. Molecular general Genetics 139, 1.CrossRefGoogle ScholarPubMed
Court, D. & Campbell, A. (1972). Gene regulation in N mutants of bacteriophage λ. Journal of Virology 9, 938.CrossRefGoogle Scholar
Dykhuizen, D. (1973). Genetic analysis of the system that reduces biotin-d-sulfoxide in Escherichia coli. Journal of Bacteriology 115, 662.CrossRefGoogle ScholarPubMed
Dykhuizen, D., Campbell, J. H. & Rolfe, B. G. (1978). The influences of a λ prophage on the growth rate of Eschericia coli K12. Microbios. (In the Press.)Google Scholar
Eisen, H., Brachet, P., Pereira da Silva, L. & Jacob, F. (1970). Regulations of repressor expression in λ. Proceedings of the National Academy of Sciences, U.S.A. 66, 855.CrossRefGoogle ScholarPubMed
Gottesman, M. E. & Yarmolinsky, M. B. (1968). Integration-negative mutants of bacteriophage lambda. Journal of Molecular Biology 31, 487.CrossRefGoogle ScholarPubMed
Gussin, G. N. & Peterson, V. (1972). Isolation and properties of rex mutants of baeteriophage lambda. Journal of Virology.CrossRefGoogle Scholar
Hayes, S. & Szybalski, W. (1973). Control of short leftward transcripts from the immunity and ori regions in induced coliphage lambda lysogens. Molecular and General Genetics 126, 275290.CrossRefGoogle Scholar
Herskowitz, I. (1974). Control of gene expression in bacteriophage lambda. Annual Review of Genetics 8, 289.Google Scholar
Hill, S. (1973). Method for exposing bacterial cultures on solid media to a denned gas mixture using nylon bags. Laboratory Practice 22, 193.Google Scholar
Howard, B. D. (1967). Phage lambda mutants deficient in rII exclusion. Science 158, 1588.CrossRefGoogle ScholarPubMed
Kaiser, A. D. (1957). Mutations in a temperate bacteriophage affecting its ability to lysogenize E. coli. Virology 3, 42.CrossRefGoogle Scholar
Mark, K. K. & Szybalski, W. (1973). Repressor and rex product of coliphage lambda: Lack of collaboration and joint controls. Molecular and General Genetics 123, 123.CrossRefGoogle ScholarPubMed
Nomura, M. & Witten, C. (1967). Interaction of colicine with bacterial cells. III Colicintolerant mutants in Eschericia coli. Journal of Bacteriology 94, 1093.Google Scholar
Ogawa, T. & Tomizawa, J. (1967). Aborative lysogenization of bacteriophage lambda b2 and residual immunity of non-lysogenic segregants. Journal of Molecular Biology 23, 225.Google Scholar
Oppenheim, A., Honigan, A. & Oppenheim, A. B. (1974). Interference with phage lambda cro gene function by a colicin-tolerant Eschericia coli mutant. Virology 61, 1.Google Scholar
Ptashne, M. (1971). Repressor and its action. In: The bacteriophage lambda (edit, by Hershey, A. D.), 211 (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory).Google Scholar
Rolfe, B. (1970). Lambda phage transduction of the bioA locus of Eschericia coli. Virology 42, 643.CrossRefGoogle Scholar
Rolfe, B. G. & Campbell, J. H. (1974). A relationship between tolerance to colicin K and the mechanism of phage-induced host cell lysis. Molecular and General Genetics 133, 293.CrossRefGoogle ScholarPubMed
Rolfe, B., Schell, J., Becker, A., Heip, J., Onodera, K. & Schell-Frederick, E. (1973). A colicin-tolerant mutant of Eschericia coli with reduced levels of cyclic AMP and a strong bias towards λ lysogeny. Molecular and General Genetics 120, 1.CrossRefGoogle Scholar
Rolfe, B. G. & Campbell, J. H. (1977). Genetic and physiological control of host cell lysis by Bacteriophage lambda. Journal of Virology 23, 626636.Google ScholarPubMed
Schwartz, M. (1966). Location of the maltose A and B loci on the genetic map of Escherichia coli. Journal of Bacteriology 92, 1083.CrossRefGoogle Scholar
Szybalski, W., Bøvre, K., Fiandt, M., Guha, A., Hradecna, Z., Kumar, S., Lozeron, H. A., Maher, V. M. Sr., Nijkamp, H. J. J., Summers, W. C. & Taylor, K. (1969). Transcriptional controls in developing bacteriophages. Journal of Cellular Physiology 74, supplement 1, 33.CrossRefGoogle ScholarPubMed