Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-17T21:59:59.311Z Has data issue: false hasContentIssue false

Effect of ecd1 mutation on the expression of genes mapped at the Drosophila melanogaster 3C11-12 intermoult puff

Published online by Cambridge University Press:  14 April 2009

Maria Furia*
Affiliation:
Dipartimento di Genetica, Biologia Generale e Molecolare, Université di Napoli, Italia Istituto di Biochimica delle Proteine ed Enzimologia, CNR, Napoli, Italia
Pier Paolo D'avino
Affiliation:
Dipartimento di Genetica, Biologia Generale e Molecolare, Université di Napoli, Italia
Filomena A. Digilio
Affiliation:
Istituto di Biochimica delle Proteine ed Enzimologia, CNR, Napoli, Italia
Stefania Crispi
Affiliation:
Dipartimento di Genetica, Biologia Generale e Molecolare, Université di Napoli, Italia
Ennio Giordano
Affiliation:
Dipartimento di Genetica, Biologia Generale e Molecolare, Université di Napoli, Italia
Lino C. Polito
Affiliation:
Dipartimento di Genetica, Biologia Generale e Molecolare, Université di Napoli, Italia Istituto di Biochimica delle Proteine ed Enzimologia, CNR, Napoli, Italia
*
*Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Drosophila melanogasterecd1 mutation causes a severe temperature-sensitive deficiency in the titre of the steroid hormone eedysone. This mutation was used to investigate the role of eedysone in both the transcription of the genes mapped at the 3C11–12 intermoult puff region and the puff formation. Thoroughly synchronized ecd1 larvae were shifted to the non-permissive temperature at various times of the development; after 24 or 48 h, the levels of the transcripts derived from Sgs-4, Pig-1 and ng-1, the three genes located at the 3C11–12 polytene bands, were determined. The results showed that the levels of the transcripts encoded by Pig-1 and ng-1 are unaffected by the drop in the ecdysone titre occurring in non-permissive conditions whereas the amount of Sgs-4 mRNA is greatly reduced. These data clearly indicate that transcription of the three genes mapped within the puff region is affected differently by the hormone. Furthermore, ecd1 larvae cultured at the non-permissive temperature show a prominent puff at the 3C11–12 polytene bands, indicating that eedysone is not essential for puff induction and that puff size is not simply correlated with high-level Sgs-4 transcription.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

Ashburner, M. & Berendes, H. D. (1978). Puffing of polytene chromosomes. In The Genetics and Biology of Drosophila, Vol. 2b (ed. Ashburner, M. and Wright, T. R. F.), pp. 319395. London: Academic Press Inc..Google Scholar
Ashburner, M. & Thompson, J. N. Jr (1978). The laboratory culture of Drosophila. In The Genetics and Biology of Drosophila, Vol. 2a (ed. Ashburner, M. and Wright, T. R. F.), pp. 1109. London: Academic Press Inc.Google Scholar
Belyaeva, E. S.Vlassova, I. E.Biyasheva, Z. M.Karpokov, V. T.Richards, G. & Zhimulev, I. F. (1981). Cytogenetic analysis of the 2B3–4–2B11 region of the Xchromosome of Drosophila melanogaster. II. Changes in 20-OH ecdysone puffing caused by genetic defects of puff 2B5. Chromosoma 84, 207219.CrossRefGoogle Scholar
Berreur, P.Porcheron, P.Berreur-Bonnefant, J. & Simpson, P. (1979). Ecdysteroid levels and pupariation in Drosophila melanogaster. Journal of Experimental Zoology 210, 347352.CrossRefGoogle Scholar
Burtis, K. CThummel, C. S.Jones, C. W.Karim, F. D. & Hogness, D. S. (1990). The Drosophila 74 EF early puff contains E74, a complex ecdysone-inducible gene that encodes two e/s-related proteins. Cell 61, 8599.CrossRefGoogle Scholar
Chen, C.Malone, T.Beckendorf, S. K. & Davis, R. L. (1987). At least two genes reside within a large intron of the dunce gene of Drosophila. Nature 329, 721724.CrossRefGoogle ScholarPubMed
Chirgwin, J. J.Przbyla, A. E.MacDonald, R. J.Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 52945299.CrossRefGoogle ScholarPubMed
Dworniczak, B.Seidel, R. & Pongs, O. (1983). Puffing activities and binding of ecdysteroid to polytene chromosomes of Drosophila melanogaster. EMBO Journal 2, 13231330.CrossRefGoogle ScholarPubMed
Furia, M.Digilio, F. A.Artiaco, D.Giordano, E. & Polito, L. C. (1990). A new gene nested within the dunce genetic unit of Drosophila melanogaster. Nucleic Acids Research 18, 58375841.CrossRefGoogle ScholarPubMed
Furia, M.Digilio, F. A.Artiaco, D.D'Avino, P. P.Cavaliere, D. & Polito, L. C. (1991). Molecular organization of the Drosophila melanogaster Pig-1 gene. Chromosoma 101, 4954.CrossRefGoogle ScholarPubMed
Garen, A.Kauvar, L. & Lepesant, J. A. (1977). Roles of ecdysone in Drosophila development. Proceedings of the National Academy of Sciences, USA 74, 50995103.CrossRefGoogle ScholarPubMed
Garfinkel, M. D.Pruitt, R. E. & Meyerowitz, E. M. (1983). DNA sequences, gene regulation and modular protein evolution in the Drosophila 68C gene cluster. Journal of Molecular Biology 169, 765789.CrossRefGoogle Scholar
Hansson, L.Lineruth, K. & Lambertsson, A. (1981). Effects of the l(1)su(f)ts67g mutation of Drosophila melanogaster on glue protein synthesis. Wilhelm Roux's Archives 190, 308312.CrossRefGoogle Scholar
Hansson, L. & Lambertsson, A. (1983). The role of su(f) gene function and ecdysterone in transcription of glue polypeptide mRNAs in Drosophila melanogaster. Molecular and General Genetics 192, 395401.CrossRefGoogle Scholar
Hofmann, A. & Korge, G. (1987). Upstream sequences of dosage-compensated and non-compensated alleles of the larval secretion protein gene Sgs-4 in Drosophila. Chromosoma 96, 17.CrossRefGoogle ScholarPubMed
Kaiser, K.Furia, M. & Glover, D. M. (1986). Dosage compensation at the Sgs-4 locus of Drosophila melanogaster. Journal of Molecular Biology 187, 529536.CrossRefGoogle Scholar
Korge, G. (1977). Direct correlation between a chromosome puff and the synthesis of a larval saliva protein in Drosophila melanogaster. Chromosoma 62, 155174.CrossRefGoogle ScholarPubMed
Korge, G.Heide, I.Sehnert, M. & Hofmann, A. (1990). Promoter is an important determinant of Cellularityly regulated puffing at the Sgs-4 locus of Drosophila melanogaster. Cellularity Biology 138, 324337.Google ScholarPubMed
Maniatis, T.Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning. A Laboratory Manual. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
McGinnis, W.Shermoen, A. W.Heemskerk, J. & Beckendorf, S. K. (1983). DNA sequence changes in an upstream DNasel-hypersensitive region are correlated with reduced gene expression. Proceedings of the National Academy of Sciences, USA 80, 10631067.CrossRefGoogle Scholar
Meyerowitz, E. M.Raghavan, K. V.Mathers, P. H. & Roark, M. (1987). How Drosophila make glue: control of Sgs-3 gene expression. Trends in Genetics 3, 288293.CrossRefGoogle Scholar
Muskavitch, M. A. T. & Hogness, D. S. (1980). Molecular analysis of a gene in a Cellularityly regulated puff of Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 77, 3627366.CrossRefGoogle Scholar
Muskavitch, M. A. T. & Hogness, D. S. (1982). An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences. Cell 29, 10411051.CrossRefGoogle Scholar
O'Connell, P. & Rosbash, M. (1984). Sequence, structure and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Research 12, 54955513.CrossRefGoogle ScholarPubMed
Pongs, O. (1988). Ecdysteroid-regulated gene expression in Drosophila melanogaster. European Journal of Biochemistry 175, 199204.CrossRefGoogle ScholarPubMed
Redfern, C. P. F. and Bownes, M. (1983). Pleiotropic effect of the ecdysoneless-1 mutation of Drosophila melanogaster. Molecular and General Genetics 189, 432440.CrossRefGoogle Scholar
Richards, G. P. (1981). The radioimmune assay of ecdysteroid titres in Drosophila melanogaster. Molecular and Cellular Endocrinology 21, 181197.CrossRefGoogle ScholarPubMed
Segraves, W. A. & Hogness, D. S. (1990). The E75 ecdysone inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes and Development 4, 204219.CrossRefGoogle ScholarPubMed
Thummel, C. S.Burtis, K. C. & Hogness, D. S. (1990). Spatial and temporal Patterns of E74 transcription during Drosophila development. Cell 61, 101111.CrossRefGoogle ScholarPubMed
Urness, L. D. & Thummel, C. S. (1990). Molecular interactions within the ecdysone regulatory hierarchy: DNA binding properties of the Drosophila ecdysone-inducible E74A protein. Cell 63, 4761.CrossRefGoogle ScholarPubMed