Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T16:07:42.605Z Has data issue: false hasContentIssue false

Dosage compensation as a developmental phenomenon in Drosophila

Published online by Cambridge University Press:  14 April 2009

Geoffrey L. Lee
Affiliation:
University of California at Davis, California, U.S.A.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The three theories of dosage compensation in Drosophila are examined. Data are presented supporting a developmental interpretation. The reason why such a mechanism is applicable in insects but not in mammals is discussed.

Type
Short Papers
Copyright
Copyright © Cambridge University Press 1968

References

Braun, W. (1942). The effect of changes in time of development on the phenotype of mutants of Drosophila melanogaster. Univ. Calif. Publs Zool. 49, 6184.Google Scholar
Bridges, C. B. & Brehme, K. S. (1944). The mutants of Drosophila melanogaster. Publs Carnegie Instn, no. 552.Google Scholar
Brosseau, G. E., Nicoetti, B., Grell, E. H., & Linsley, D. L. (1961). Production of altered Y chromosomes bearing specific sections of the X chromosome in Drosophila. Genetics 46, 339346.CrossRefGoogle ScholarPubMed
Clarke, A. M. & Mitchell, C. J. (1951). Gene dosage relationships for haploids and diploids of Habrobracon. Genetics 36, 185198.CrossRefGoogle Scholar
Dobzhansky, T. L. (1957). The X chromosome in the larval salivary glands of hybrids Drosophila insularis × Drosophila tropicalis. Chromosoma 8, 691698.CrossRefGoogle ScholarPubMed
Fraser, A. S. (1966). Variation of scutellar bristles in Drosophila. XII. Selection in scute lines. A.J.B.S. 19, 147154.Google ScholarPubMed
Frizzi, G. (1948). L'eteropicnosi come indice di riconoscimento dei sessi in Bomby × mori L. Ric. Sci. 18, 17.Google Scholar
Geitler, L. (1937). Die Analyse des Kernbaus und der Kernteilung der Wasserläufer Gerris lateralis und Gerris lacustria (Hemiptera, Heteroptera) und die Somadifferenzierung. Z. Zellforsch mikrosk. Anat. 26, 641.CrossRefGoogle Scholar
Goldschmidt, R. B. (1955). Theoretical Genetics, pp. 356358. Berkeley: University of California Press.Google Scholar
Harnly, M. H. & Harnly, M. L. (1935). The effect of temperature on the wings and eyes of the dimorphos vestigial combinations in D. melanogaster. J. exp. Zool. 72, 7599.CrossRefGoogle Scholar
Harrison, B. J. (1953). Reversal of a secondary sex character by selection. Heredity 7, 153164.CrossRefGoogle Scholar
Kroeger, H. (1960). Hypo- and hyperdevelopment of the male genital apparatus and the Bd-M combination in Drosophila melanogaster. J. Morph. 107, 227232.CrossRefGoogle ScholarPubMed
Linsley, D. L. (1964). Chromosomal function at the supragenic level. Natn. Cancer Inst. Monogr. 18, 275290.Google Scholar
Lyon, M. F. (1961). Gene action in the X chromosome of the mouse (Mus musculus L.). Nature, Land. 190, 372373.CrossRefGoogle ScholarPubMed
Lyon, M. (1962). Sex chromatin and gene action in the mammalian X chromosome. Am. J. Human Genet. 14, 135148.Google ScholarPubMed
Merrell, D. J. & Underhill, J. C. (1956). Competition between mutants in experimental populations of Drosophila melanogaster. Genetics 41, 469477.CrossRefGoogle ScholarPubMed
Muller, H. J. (1950). Evidence for the precision of genetic adaptation. In The Harvey Lect. ser. XLIII, 1947–48, pp. 165299. Springfield, III.: Charles C. Thomas.Google Scholar
Muller, H. J. & Kaplan, W. D. (1966). The dosage compensation of Drosophila and mammals as showing the accuracy of the normal type. Genet. Res. 8, 4159.CrossRefGoogle ScholarPubMed
Offermann, C. A. (1936). Branched chromosomes as symmetrical duplications. J. Genet. 32, 103116.CrossRefGoogle Scholar
Smith, S. G. (1945). Heteropycnosis as a means of diagnosing sex. J. Hered. 37, 195199.CrossRefGoogle Scholar
Van Pelt, G. S. (1966). The problem of gene dosage in Habrobracon. (Abstract only.) Genetics 54, 367.Google Scholar