Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-24T15:14:34.507Z Has data issue: false hasContentIssue false

Chromosome mapping in Pseudomonas aeruginosa

Published online by Cambridge University Press:  14 April 2009

J. M. Pemberton
Affiliation:
Department of Genetics, Monash University, Clayton, Victoria 3168, Australia
B. W. Holloway
Affiliation:
Department of Genetics, Monash University, Clayton, Victoria 3168, Australia

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A more extensive linkage map of Pseudomonas aeruginosa strain PAO has been compiled from data obtained by both, conjugation and transduction procedures. All the markers examined are located on one linkage group and the available evidence suggests that the sex factor FP2 promotes transfer of the chromosome in a polarized manner from only one site on this linkage group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

References

REFERENCES

De Haan, P. G., Hoekstra, W. P. H., Verhoef, C. & Felix, H. S. (1969). Recombination in Escherichia coli. III. Mapping by the gradient of transmission. Mutation Research 8, 505512.CrossRefGoogle Scholar
Demerec, M., Adelberg, E. A., Clark, A. J. & Hartman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 6176.CrossRefGoogle ScholarPubMed
Fargie, B. & Holloway, B. W. (1965). Absence of clustering of functionally related genes in Pseudomonas aeruginosa. Genetical Research 6, 284299.CrossRefGoogle ScholarPubMed
Holloway, B. W. (1955). Genetic recombination in Pseudomonas aeruginosa. Journal of General Microbiology 13, 572581.Google ScholarPubMed
Holloway, B. W. (1966). Mutants of Pseudomonas aeruginosa with reduced recombination ability. Mutation Research 3, 452455.CrossRefGoogle ScholarPubMed
Holloway, B. W. (1969). Genetics of Pseudomonas. Bacteriological Reviews 33, 419443.CrossRefGoogle ScholarPubMed
Holloway, B. W. & Van De Putte, P. (1968). Lysogeny and bacterial recombination. In Replication and Recombination of Genetic Material (ed. Peacock, W. J. and Brock, R. D.), pp. 175183. Australian Academy of Science.Google Scholar
Holloway, B. W., Egan, J. B. & Monk, M. (1960). Lysogeny in Pseudomonas aeruginosa. Australian Journal of Experimental Biology and Medical Science 38, 321330.CrossRefGoogle ScholarPubMed
Holloway, B. W., Krishnapillai, V. & Stanisich, V. (1971). Pseudomonas genetics. Annual Review of Genetics 5, 425441.CrossRefGoogle ScholarPubMed
Isaac, J. & Holloway, B. W. (1968). Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. Journal of Bacteriology 96, 17321741.CrossRefGoogle ScholarPubMed
Kageyama, M. (1970 a). Genetic mapping of a bacteriocinogenic factor in Pseudomonas aeruginosa. I. Mapping of pyocin R2 factor by conjugation. Journal of General and Applied Microbiology 16, 523530.CrossRefGoogle Scholar
Kageyama, M. (1970 b). Genetic mapping of a bacteriocinogenic factor in Pseudomonas aeruginosa. II. Mapping of pyocin R2 factor by transduction with phage F116. Journal of General and Applied Microbiology 16, 531535.CrossRefGoogle Scholar
Krishnapillai, V. (1971). A novel transducing phage: Its role in recognition of a possible new host controlled modification system in Pseudomonas aeruginosa. Molecular and General Genetics (in the Press).Google Scholar
Loutit, J. S. (1969). Investigation of the mating system of Pseudomonas aeruginosa strain 1 IV. Mapping of distal markers. Genetical Research 13, 9198.CrossRefGoogle ScholarPubMed
Mee, B. J. & Lee, B. T. O. (1967). An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55, 709722.CrossRefGoogle ScholarPubMed
Mee, B. J. & Lee, B. T. O. (1969). A map order for His I, one of the genetic regions controlling histidine biosynthesis in Pseudomonas aeruginosa, using the transducing phage F116. Genetics 62, 687696.CrossRefGoogle Scholar
Rolfe, B. & Holloway, B. W. (1966). Alterations in host specificity of bacterial deoxyribonucleic acid after an increase in growth temperature of Pseudomonas aeruginosa. Journal of Bacteriology 92, 4348.CrossRefGoogle ScholarPubMed
Stanisich, V. A. & Holloway, B. W. (1969 a). Conjugation in Pseudomonas aeruginosa. Genetics 61, 327339.CrossRefGoogle ScholarPubMed
Stanisich, V. A. & Holloway, B. W. (1969 b). Genetic effects of acridines on Pseudomonas aeruginosa. Genetical Research, Cambridge 13, 5770.CrossRefGoogle ScholarPubMed
Stanisich, V. A. & Holloway, B. W. (1971). Chromosome transfer in Pseudomonas aeruginosa mediated by R factors. Genetical Research, Cambridge 17, 169172.CrossRefGoogle ScholarPubMed
Stanisich, V. A. & Holloway, B. W. (1972). A mutant sex factor of Pseudomonas aeruginosa. Genetical Research 19 (in the Press).CrossRefGoogle ScholarPubMed
Vogel, H. J. & Bonner, D. M. (1956). Acetylornithmase of Escherichia coli: partial purification and some properties. Journal of Biological Chemistry 218, 97106.CrossRefGoogle ScholarPubMed
Waltho, J. A. & Holloway, B. W. (1966). Suppression of fluorophenylalanine resistance by mutation to streptomycin resistance in Pseudomonas aeruginosa. Journal of Bacteriology 92, 3542.CrossRefGoogle ScholarPubMed