Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T14:02:54.908Z Has data issue: false hasContentIssue false

Calcium and phosphorus metabolism in the grey-lethal mouse

Published online by Cambridge University Press:  14 April 2009

Helen M. Murphy
Affiliation:
M.R.C. Experimental Genetics Research Unit, Department of Animal Genetics, University College London

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ca and P metabolism in the grey-lethal mutant mouse has been investigated. This animal is hypocalcaemic and hypophosphataemic and the serum alkaline phosphatase is elevated far above the normal. Increased bone ash content has been attributed to an elevated bone Ca. From in vitro experiments involving steady-state distributions of calcium and phosphate it is concluded that active bone metabolism is reduced in mutant bone. This reduced ratio may be attributed to an increased passive ion solubility.

These results tend to the assumption of an hormonal imbalance in this mutant system. An increased production of thyrocalcitonin has been postulated to account for these findings.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

References

REFERENCES

Aliapoulios, M. A., Goldhaber, P. & Munson, P. L. (1966). Thyrocalcitonin inhibition of bone resorption induced by parathyroid hormone in tissue culture. Science, N.Y. 151, 330331.CrossRefGoogle ScholarPubMed
Ambroso, G. A., Zinicola, N. & Lastella, S. (1958). Attivà fosfomonoesterasica nell'-iperparatirioidismo sperimentale. III. Ricerche biochimiche seriche. Ateneo parmense 29, 166178.Google Scholar
Barker, S. B. & Summerson, W. H. (1941). The colorimetric determination of lactic acid in biological material. J. biol. Chem. 138, 536554.CrossRefGoogle Scholar
Barnicot, N. A. (1945). Some data on the effect of parathormone on the grey–lethal mouse. J. Anat. 79, 8391.Google ScholarPubMed
Barnicot, N. A. (1948). The local action of the parathyroid and other tissues on bone in intracerebral grafts. J. Anat. 82, 233248.Google Scholar
Bateman, N. (1954). Bone growth: a study of the grey–lethal and microphthalmic mutants in the mouse. J. Anat. 88, 212262.Google ScholarPubMed
Bessey, O. A., Lowry, O. H. & Brock, M. J. (1946). A method for the rapid determination of alkaline phosphatase with five millimeters of serum. J. biol. Chem. 164, 321329.CrossRefGoogle ScholarPubMed
Bett, I. M. & Frazer, G. P. (1959). A rapid micro-method for determining serum calcium. Clinica chim. Acta 4, 346356.CrossRefGoogle Scholar
Cantarow, A., Brundage, J. T. & Housel, E. L. (1937). Experimental acute hyperparathyroidism. 1. Chemical studies. Endocrinology 21, 368373.CrossRefGoogle Scholar
Cenciotti, L., Mariotti, A. & Zoli, A. (1959). Effetto dell'ormone parathiroideo su alcune attività enzimatiche seriche net ratto. Boll. Soc. ital. Biol. Sper. 35, 11901193.Google Scholar
Chang, H. (1951). Grafts of parathyroid and other tissue to bone. Anat. Bee. 111, 2339.Google Scholar
Chen, P. S., Toribara, T. Y. & Warner, H. (1956). Microdetermination of phosphorus. Analyt. Chem. 28, 17561758.CrossRefGoogle Scholar
Foster, G. V., Baghdiantz, A., Kumar, M. A., Slack, E., Soliman, H. A. & MacIntyre, I. (1964). Thyroid origin of calcitonin. Nature, Lond. 202, 13031305.CrossRefGoogle ScholarPubMed
Foster, G. V., Doyle, F. H., Bordier, P. & Matrajt, H. (1966). Effect of thyrocalcitonin on bone. Lancet pp. 14281431.CrossRefGoogle ScholarPubMed
Foster, G. V., MacIntyre, I. & Pearse, A. G. E. (1964). Calcitonin production and the mitochondrion rich cells of the dog thyroid. Nature, Lond. 203, 10291030.CrossRefGoogle ScholarPubMed
Friedman, J. & Raisz, L. G. (1965). Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science, N.Y. 150, 14651467.CrossRefGoogle ScholarPubMed
Gaillard, P. J. (1961). The Parathyroids. Springfield: Charles C. Thomas.Google Scholar
Gaillard, P. J. (1966). Fourth European Symposium on Calcified Tissues. Excerpta Medica Foundation, 1966, p. 32.Google Scholar
Gould, B. S. (1944). Studies on the source of serum phosphatase: the nature of the increased serum phosphatase in rats after fat feeding. Archs Biochem. 4, 175181.Google Scholar
Grüneberg, H. (1935). A new sub-lethal colour mutation in the house mouse. Proc. R. Soc. B 118, 321342.Google Scholar
Grüneberg, H. (1936). Grey–lethal, a new mutation in the house mouse. J. Hered. 27, 105109.CrossRefGoogle Scholar
Grüneberg, H. (1937). The relations of endogenous and exogenous factors in bone and tooth development. The teeth of the grey–lethal mouse. J. Anat. 71, 236244.Google Scholar
Grüneberg, H. (1938). Some new data on the grey–lethal mouse. J. Genet. 36, 153170.CrossRefGoogle Scholar
Grüneberg, H. (1966). More about the tabby mouse and about the Lyon hypothesis. J. Embryol. exp. Morph. 16, 569590.Google ScholarPubMed
Hirsch, P. F. (1967). Thyrocalcitonin inhibition of bone resorption induced by parathyroid extract in thyroparathyroidectomized rats. Endocrinology 80, 539541.CrossRefGoogle ScholarPubMed
Hirsch, P. F., Gauthier, G. F. & Munson, P. L. (1963). Thyroid hypocalcemic principle and recurrent laryngeal nerve injury as factors affecting the response to parathyroidectomy in rats. Endocrinology 73, 244252.CrossRefGoogle ScholarPubMed
Kind, P. R. N. & King, E. J. (1954). Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J. clin. Path. 7, 322326.CrossRefGoogle ScholarPubMed
Mouzas, G. L. & Weiss, J. B. (1961). Biological method of detection of parathyroid hormone. Br. med. J. i, 181182.CrossRefGoogle Scholar
Murphy, H. M. (1968). Citrate metabolism in osteopatrotic bone. To be submitted to Biochem. biophys. Res. Commun.Google Scholar
Raisz, L. G. (1963). Stimulation of bone resorption by parathyroid hormone in tissue culture. Nature, Lond. 197, 10151016.CrossRefGoogle ScholarPubMed
Schartum, S. & Nichols, G. (1961). Calcium metabolism in bone in vitro. Influence of bone cellular metabolism and parathyroid hormone. J. clin. Invest. 40, 20832091.CrossRefGoogle ScholarPubMed
Schneider, W. C. (1957). Methods in Enzymology, vol. III, p. 680. New York: Academic Press.Google Scholar
Spandrio, L. (1965). A spectrophotometric micro-method for calcium determinations in blood serum. Clin. chim. Acta 12, 703704.CrossRefGoogle Scholar
Vaes, G. & Nichols, G. (1961). Citric acid metabolism and bone mineral solubility. Effects of parathyroid hormone and estradiol. J. biol. Chem. 236, 33233329.CrossRefGoogle ScholarPubMed
Walker, D. G. (1966 a). Counteraction to parathyroid therapy in osteopetrotic mice as revealed in the plasma calcium level and ability to incorporate H3-proline into bone. Endocrinology 79, 836842.CrossRefGoogle Scholar
Walker, D. G. (1966 b). Elevated bone collagenolytic activity and hyperplasia of parafollicular light cells of the thyroid gland in parathormone-treated grey–lethal mice. Z. Zellforsch. mikrosk. Anat. 72, 100123.CrossRefGoogle ScholarPubMed
Wase, A. W., Peterson, A., Rickes, E. & Solewski, J. (1966). Some effects of thyrocalcitonin on the calcium metabolism of the rat. Endocrinology 79, 687691.CrossRefGoogle ScholarPubMed
Watchorn, E. (1938). Some biochemical data on the grey–lethal mouse. J. Genet. 36, 171176.CrossRefGoogle Scholar