Skip to main content Accessibility help
×
Home

Artificial selection on phenotypically plastic traits

  • MARK KIRKPATRICK (a1) and THOMAS BATAILLON (a2)

Abstract

Many phenotypes respond physiologically or developmentally to continuously distributed environmental variables such as temperature and nutritional quality. Information about phenotypic plasticity can be used to improve the efficiency of artificial selection. Here we show that the quantitative genetic theory for ‘infinite-dimensional’ traits such as reaction norms provides a natural framework to accomplish this goal. It is expected to improve selection responses by making more efficient use of information about environmental effects than do conventional methods. The approach is illustrated by deriving an index for mass selection of a phenotypically plastic trait. We suggest that the same approach could be extended directly to more general and efficient breeding schemes, such as those based on general best linear unbiased prediction. Methods for estimating genetic covariance functions are reviewed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Artificial selection on phenotypically plastic traits
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Artificial selection on phenotypically plastic traits
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Artificial selection on phenotypically plastic traits
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Tel: +1 (512) 471 5996. Fax: +1 (512) 471-3878. kirkp@mail.utexas.edu

Artificial selection on phenotypically plastic traits

  • MARK KIRKPATRICK (a1) and THOMAS BATAILLON (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed