Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-13T13:08:23.847Z Has data issue: false hasContentIssue false

An independent non-linear latitudinal cline for the sn-glycerol-3-phosphate (α-Gpdh) polymorphism of Drosophila melanogaster from eastern Australia

Published online by Cambridge University Press:  10 February 2006

PAUL A. UMINA
Affiliation:
Centre for Environmental Stress and Adaptation Research, School of Biological Sciences, Monash University, Victoria 3800, Australia
ARY A. HOFFMANN
Affiliation:
Centre for Environmental Stress and Adaptation Research, Department of Genetics, The University of Melbourne, Victoria 3010, Australia
ANDREW R. WEEKS
Affiliation:
Centre for Environmental Stress and Adaptation Research, Department of Genetics, The University of Melbourne, Victoria 3010, Australia
STEPHEN W. MCKECHNIE
Affiliation:
Centre for Environmental Stress and Adaptation Research, School of Biological Sciences, Monash University, Victoria 3800, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Latitudinal variation of the polymorphic sn-glycerol-3-phosphate (α-Gpdh) locus in Drosophila melanogaster has been characterized on several continents; however, apparent clinal patterns are potentially confounded by linkage with an inversion, close associations with other genetic markers that vary clinally, and a tandem α-Gpdh pseudogene. Here we compare clinal patterns in α-Gpdh with those of other linked markers by testing field flies from eastern Australian locations collected in two separate years. The α-Gpdh variation exhibited a consistent non-linear cline reflecting an increase in the α-GpdhF allele at extreme latitudes. This pattern was not influenced by the In(2L)t inversion wherein this locus is located, nor was it influenced by the presence of the α-Gpdh pseudogene, whose presence was ubiquitous and highly variable among populations. The α-Gpdh pattern was also independent of a cline in allozyme frequencies at the alcohol dehydrogenase (Adh) locus, and two length polymorphisms in the Adh gene. These results suggest clinal selection at the α-Gpdh locus that is partially or wholly unrelated to linear climatic gradients along the eastern coast of Australia.

Type
Research Article
Copyright
2006 Cambridge University Press