Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T03:07:16.164Z Has data issue: false hasContentIssue false

Approach to assess infrared thermal imaging of almond trees under water-stress conditions

Published online by Cambridge University Press:  12 October 2012

Get access

Abstract

Introduction. Optimising agricultural water use implies the combination of physiological, technological and engineering techniques, especially those for continuously monitoring the water status of plants subjected to deficit irrigation. A methodology to estimate water stress of young almond trees from thermal images was developed based on assessing the physiological status of almond crops under limited water-supply conditions. Materials and methods. Two irrigation treatments were tested during the maximum evapotranspirative demand period (214th to the 243rd day of the year) in an experimental almond [Prunus dulcis (Mill) D.A. Webb, cv. Guara] orchard: a low-frequency deficit irrigation (LFDI) treatment, irrigated according to the plant-water status, and a fully irrigated treatment (C100) at 100% of crop evapotranspiration. Daily canopy temperature at midday (TC) was measured with an infrared camera, together with standard measurements of stem-water potential (ΨStem) and stomatal conductance (gS). The time course of these parameters and their relationships were analysed. Results and discussion. The time course of the parameters studied showed highly significant correlations among the differentials of canopy-air temperature (ΔT), ΨStem and gS. The methodological protocol for analysing thermal images allowed a time saving in processing information and additionally offered the possibility of estimating the ΨStem and gS values. Conclusion. Our results confirm that infrared thermography is a suitable technique for assessing the crop-water status and can be used as an important step towards automated plant-water stress management in almond orchards.

Type
Original article
Copyright
© 2012 Cirad/EDP Sciences

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Martin G.C., Kester D., Almond growth and development, in: Micke W.C., Kester D. (Eds.), Almond orchard management, Div. Agric. Sci., Univ. Calif., Berkeley, U.S.A., 1978, pp. 46–51.
Girona, J., Mata, M., Marsal, J., Regulated deficit irrigation during the kernel filling. Period and optimal irrigation rates in almond, Agric. Water Manag. 75 (2005) 152167.CrossRefGoogle Scholar
Goldhamer, D.A., Viveros, M., Salinas, M., Regulated deficit irrigation in almonds: effects of variations in applied water and stress timing on yield and yield components, Irrig. Sci. 24 (2006) 101114.CrossRefGoogle Scholar
Nanos, G.D., Kazantzis, I., Kefalas, P., Petrakis, C., Stravroulakis, G.G., Irrigation and harvest time affect almond kernel quality and composition, Sci. Hortic. 96 (2002) 246256.CrossRefGoogle Scholar
Castel, J.R., Fereres, E., Responses of young almond trees to two drought periods in the field, J. Hortic. Sci. 57 (1982) 175187.CrossRefGoogle Scholar
Marsal, J., Girona, J., Mata, M., Leaf water relation parameters in almond compared to hazelnut trees during a deficit irrigation period, J. Am. Soc. Hortic. Sci. 122 (1997) 582587.Google Scholar
Romero, O., Botia, P., Garcia, F., Effects of regulated deficit irrigation under subsurface drip irrigation conditions on vegetative development and yield of mature almond trees, Plant Soil 260 (2004) 169181.CrossRefGoogle Scholar
Durán, Z.V.H., Rodríguez, C.R., Franco, D., Impact of sustained–deficit irrigation on tree growth, mineral nutrition, fruit yield and quality of mango in Spain, Fruits 66 (2011) 257268.CrossRefGoogle Scholar
Johnson, R.S., Handley, D.F., Using water stress to control vegetative growth and productivity of temperate fruit trees, HortScience 35 (2000) 10481050.Google Scholar
Intrigliolo, D.S., Castel, J.R., Evaluation of grapevine water status from trunk diameter variations, Irrig. Sci. 26 (2007) 4959.CrossRefGoogle Scholar
García-Tejero I., Durán Z.V.H., Rodríguez P.C.R., Muriel F.J.L., Water and sustainable agriculture, Springer Briefs in Agriculture, Springer Science + Business Media, Neth., 2011.
Mahhou, A., De Jong, T.M., Shackel, K.S., Cao, T., Water stress and crop load effects on yield and fruit quality of Elegant Lady peach [Prunus persica (L.) Batch], Fruits 61 (2011) 407418.CrossRefGoogle Scholar
García-Tejero, I., Durán, Z.V.H., Muriel, F.J.L., Jiménez, B.J.A., Linking canopy temperature and trunk diameter fluctuations with other physiological water status tools for water stress management in citrus crops, Funct. Plant Biol. 38 (2011) 106117.CrossRefGoogle Scholar
Jiménez-Bello, M.A., Ballester, C., Castel, J.R., Intrigliolo, D.S., Development and validation of an automatic thermal imaging process for assessing plant water status, Agric. Water Manag. 98 (2011) 14971504.CrossRefGoogle Scholar
Tubaileh, A.S., Sammis, T.W., Lugg, D.G., Utilization of thermal infrared thermometry for detection water stress in spring barley, Agric. Water Manag. 12 (1986) 7585.CrossRefGoogle Scholar
Blonquist, J.M., Norman, J.M., Bugbee, B., Automated measurement of canopy stomatal conductance based on infrared temperature, Agric. Forest Meteorol. 149 (2009) 19311945.CrossRefGoogle Scholar
Erlher, W.L., Cotton leaf temperatures as related to soil depletion and meteorological factors, Agron. J. 65 (1973) 404409.CrossRefGoogle Scholar
Jackson, R.D., Idso, S.B., Reginato, R.J., Pinter, P.J., Canopy temperature as a crop water stress indicator, Water Resour. Res. 17 (1981) 11331138.CrossRefGoogle Scholar
García-Tejero I., Deficit irrigation for sustainable citrus cultivation in Guadalquivir river basin, Univ. Sevilla, Thesis, Sevilla, Spain, 285 p., 2010.
Berni, J.A.J., Zarco, T.P.J., Sepulcro, C.G., Fereres, E., Villalobos, F., Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imaginery, Remote Sens. Environ. 113 (2009) 23802388.CrossRefGoogle Scholar
Jones, H.G., Stoll, M., Santos, T., de Sousa, C., Chaves, M.M., Grant, O.M., Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine, J. Exp. Bot. 53 (2002) 22492260.CrossRefGoogle Scholar
Zarco-Tejada, P.J., Berni, J.A.J., Suárez, L., sepulcré-Cantó, G., Morales, F., Miller, J.R., Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection, Remote Sens. Environ. 113 (2009) 12621275.CrossRefGoogle Scholar
Wang, D., Gartung, J., Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation, Agric. Water Manag. 97 (2010) 17871794.CrossRefGoogle Scholar
Wang, X., Yang, W., Wheaton, A., Cooley, N., Moran, W., Automated canopy temperature estimation via infrared thermography: a first step towards automated plant water stress monitoring, Comput. Electron. Agric. 73 (2010) 7483.CrossRefGoogle Scholar
Anon., World reference base for soil resources, Food Agric. Organ. U. N. (FAO), Rome, Italy, 1998.
Anon., Carte bioclimatique de la zone méditerranéenne, UNESCO-FAO, Not. Explic., Paris, France, 1963.
Doorenbos J., Pruitt W.O., Las necesidades de agua de los cultivos, FAO, ser. Riegos y Drenaje, tomo 24, Rome, Italy, 1977.
Monteith J.L., Unsworth M.H., Principles of environmental physics, 3rd ed., Acad. Press, Amst., Neth., 2008.
Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., Bradstreet, E.D., Hydrostatic pressure and osmotic potential of leaves of mangrove and some other plants, Proc. Natl. Acad. Sci. U.S.A. 52 (1964) 119125.CrossRefGoogle Scholar
Kernighan B.W., Ritchie D.M., The C Programming Language, 1st ed., Prentice Hall, Englewood Cliffs, N.J., U.S.A., 1978.
Anon., Programming Languages-C, ISO/IEC 9899 WG 14, Int. Stand. Organ., 1999.
Shackel, K.A., Ahmadi, H., Biasi, W., Buchner, R., Goldhamer, D., Gurusinghe, D., Hasey, S., Kester, D., Krueger, B., Lampinen, B., McGourty, G., Micke, W., Mitchman, E., Olson, B., Pelletrau, K., Philips, H., Ramos, D., Schwankl, L., Sibbett, S., Snyder, R., Southwick, S., Stevenson, M., Thorpe, M., Weinbuam, S., Yeager, J., Plant water status as an index of irrigation need in deciduous fruit trees, HortTechnology 7 (1997) 2329.Google Scholar
Goldhamer, D.A., Fereres, E., Irrigation scheduling of almond trees with trunk diameter sensors, Irrig. Sci. 23 (2004) 1119.CrossRefGoogle Scholar
Nortes P., Respuesta Agronómica y Fisiológica del Almendro al Riego Deficitario. Indicadores de Estrés Hídrico, Univ. Politéc. Cartagena, Thesis, Spain, 2008, 194 p.
Gomes-Laranjo, J., Cutinho, J.P., Galhano, V., Cordeiro, V., Responses of five almond cultivars to irrigation: Photosynthesis and leaf water potential, Agric. Water Manag. 83 (2006) 261265.CrossRefGoogle Scholar
Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osório, M.L., Carvalho, I., Faria, T., Pinheiro, C., How plants cope with water stress in the field? Photosynthesis and growth, Ann. Bot. 89 (2002) 907916.CrossRefGoogle Scholar
Naor A., Irrigation scheduling and evaluation of tree water status in deciduous orchards, Hortic. Rev. (2006) 112–165.
García-Tejero, I., Durán, Z.V.H., Jiménez, B.J.A., Muriel, F.J.L., Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards, Sci. Hortic. 128 (2011) 274282.CrossRefGoogle Scholar
Jones, H.G., Serraj, R., Loveys, B.R., Xiong, L., Wheaton, A., Price, A.H., Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field, Funct. Plant Biol. 36 (2009) 978989.CrossRefGoogle Scholar
Jurema, R., Nogueira, M.C., Ibrahim, M.A., Bandeira, A.M., Stomatic behaviour and leaf water potential in young plants of Annona squamosa submitted to saline water stress, Fruits 59 (2004) 209214.CrossRefGoogle Scholar
Sepulcre, C.G., Zarco, T.P.J., Jiménez, M.J.C., Sobrino, J.A., de Miguel, E., Villalobos, F.J., Detection of water stress in an olive orchard with thermal remote sensing imagery, Agric. Forest Meteorol. 136 (2006) 3144.CrossRefGoogle Scholar
Smith, R.C.G., Inferring stomatal resistance of sparse crops from infrared measurements of foliage temperature, Agric. Forest Meteorol. 42 (1988) 183198.CrossRefGoogle Scholar
Testi, L., Orgaz, F., Villalobos, F.J., Variations in bulk canopy conductance of an irrigated olive (Olea europea L.) orchard, Environ. Exp. Bot. 55 (2006) 1528.CrossRefGoogle Scholar