Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T20:16:02.168Z Has data issue: false hasContentIssue false

KUDLA’S MODULARITY CONJECTURE AND FORMAL FOURIER–JACOBI SERIES

Published online by Cambridge University Press:  01 October 2015

JAN HENDRIK BRUINIER
Affiliation:
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstraße 7, D-64289 Darmstadt, Germany; bruinier@mathematik.tu-darmstadt.de
MARTIN WESTERHOLT-RAUM
Affiliation:
Chalmers tekniska högskola och Göteborgs Universitet, Institutionen för Matematiska vetenskaper, SE-412 96 Göteborg, Sweden; martin@raum-brothers.eu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove modularity of formal series of Jacobi forms that satisfy a natural symmetry condition. They are formal analogs of Fourier–Jacobi expansions of Siegel modular forms. From our result and a theorem of Wei Zhang, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension and for all orthogonal Shimura varieties.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2015

References

Andrianov, A. N., ‘Modular descent and the Saito–Kurokawa conjecture’, Invent. Math. 53(3) (1979), 267280.Google Scholar
Aoki, H., ‘Estimating Siegel modular forms of genus 2 using Jacobi forms’, J. Math. Kyoto Univ. 40(3) (2000), 581588.Google Scholar
Ash, A., Mumford, D., Rapoport, M. and Tai, Y.-S., ‘Smooth compactification of locally symmetric varieties’, in: Lie Groups: History, Frontiers and Applications, IV (Mathematical Science Press, Brookline, MA, 1975).Google Scholar
Blichfeldt, H. F., ‘The minimum value of quadratic forms, and the closest packing of spheres’, Math. Ann. 101(1) (1929), 605608.Google Scholar
Borcherds, R. E., ‘The Gross–Kohnen–Zagier theorem in higher dimensions’, Duke Math. J. 97(2) (1999), 219233.Google Scholar
Borel, A. and Wallach, N. R., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Annals of Mathematics Studies, 94 (Princeton University Press and University of Tokyo Press, Princeton, NJ and Tokyo, 1980).Google Scholar
Braun, H., ‘Hermitian modular functions’, Ann. of Math. (2) 50(2) (1949), 827855.Google Scholar
Bruinier, J. H., ‘Vector valued formal Fourier–Jacobi series’, Proc. Amer. Math. Soc. 143(2) (2015), 505512.Google Scholar
Bruinier, J. H., van der Geer, G., Harder, G. and Zagier, D. B., The 1-2-3 of Modular Forms, Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004 (Universitext, Springer, Berlin, 2008).CrossRefGoogle Scholar
Eichler, M., ‘Über die Anzahl der linear unabhängigen Siegelschen Modulformen von gegebenem Gewicht’, Math. Ann. 213 (1975), 281291. erratum; ibid. 215 (1975), 195.Google Scholar
Eichler, M. and Zagier, D. B., The Theory of Jacobi Forms, Progress in Mathematics, 55 (Birkhäuser Boston Inc., Boston, MA, 1985).Google Scholar
Farkas, G., Grushevsky, S., Salvati Manni, R. and Verra, A., ‘Singularities of theta divisors and the geometry of A5’, J. Eur. Math. Soc. (JEMS) 16(9) (2014), 18171848.Google Scholar
Freitag, E. and Kiehl, R., Étale Cohomology and the Weil Conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 13 (Springer, Berlin, 1988), Translated from the German by B. S. Waterhouse and W. C. Waterhouse, with an historical introduction by J. A. Dieudonné.Google Scholar
Fritzsche, K. and Grauert, H., From Holomorphic Functions to Complex Manifolds, Graduate Texts in Mathematics, 213 (Springer, New York, 2002).Google Scholar
Grauert, H. and Remmert, R., ‘Komplexe Räume’, Math. Ann. 136 (1958), 245318.Google Scholar
Grushevsky, S., ‘Geometry of Ag and its compactifications’, in: Algebraic Geometry—Seattle 2005. Part 1, Proceedings of Symposia in Applied Mathematics, 80 (American Mathematical Society, Providence, RI, 2009), 193234.Google Scholar
Ibukiyama, T., Poor, C. and Yuen, D. S., ‘Jacobi forms that characterize paramodular forms’, Abh. Math. Semin. Univ. Hambg. 83(1) (2013), 111128.Google Scholar
Kohnen, W., Krieg, A. and Sengupta, J., ‘Characteristic twists of a Dirichlet series for Siegel cusp forms’, Manuscripta Math. 87(4) (1995), 489499.Google Scholar
Kohnen, W. and Skoruppa, N.-P., ‘A certain Dirichlet series attached to Siegel modular forms of degree two’, Invent. Math. 95(3) (1989), 541558.Google Scholar
Krieg, A., Modular Forms on Half-Spaces of Quaternions, Lecture Notes in Mathematics, 1143 (Springer, Berlin, 1985).Google Scholar
Kudla, S. S., ‘Algebraic cycles on Shimura varieties of orthogonal type’, Duke Math. J. 86(1) (1997), 3978.Google Scholar
Kudla, S. S., ‘Special cycles and derivatives of Eisenstein series’, in: Heegner Points and Rankin L-Series, Mathematical Sciences Research Institute Publications, 49 (Cambridge University Press, Cambridge, 2004), 243270.Google Scholar
Kudla, S. S. and Millson, J., ‘Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables’, Publ. Math. Inst. Hautes Études Sci. 71 (1990), 121172.Google Scholar
Maass, H., ‘Über eine Spezialschar von Modulformen zweiten Grades’, Invent. Math. 52(1) (1979), 95104.Google Scholar
Maass, H., ‘Über eine Spezialschar von Modulformen zweiten Grades II’, Invent. Math. 53(3) (1979), 249253.Google Scholar
Maass, H., ‘Über eine Spezialschar von Modulformen zweiten Grades III’, Invent. Math. 53(3) (1979), 255265.Google Scholar
Matsumura, H., Commutative Algebra, 2nd edn, Mathematics Lecture Note Series, 56 (Benjamin/Cummings Publishing Co., Reading, MA, 1980).Google Scholar
Namikawa, Y., Toroidal Compactification of Siegel Spaces, Lecture Notes in Mathematics, 812 (Springer, Berlin, 1980).Google Scholar
Raum, M., ‘Formal Fourier Jacobi expansions and special cycles of codimension 2’, Compos. Math. (accepted), Preprint 2013, arXiv:1302.0880.Google Scholar
Runge, B., ‘Theta functions and Siegel–Jacobi forms’, Acta Math. 175(2) (1995), 165196.Google Scholar
Salvati Manni, R., ‘Modular forms of the fourth degree’, in: Classification of Irregular Varieties (Trento, 1990), Lecture Notes in Mathematics, 1515 (Springer, Berlin, 1992), 106111.Google Scholar
Shimura, G., ‘The arithmetic of automorphic forms with respect to a unitary group’, Ann. of Math. (2) 107(3) (1978), 569605.Google Scholar
Siegel, C. L., ‘Die Modulgruppe in einer einfachen involutorischen Algebra’, in: Festschrift zur Feier des zweihundertjährigen Bestehens der Akademie der Wissenschaften in Göttingen, I. Math.-Phys. Kl. (Springer, Berlin, 1951), 157167.Google Scholar
Taïbi, O., ‘Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula’, Preprint, 2014, arXiv:14064247.Google Scholar
The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2014.Google Scholar
Wang, J., ‘Estimations on dimensions of spaces of Jacobi forms’, Sci. China A 42(2) (1999), 147153.Google Scholar
Yuan, X., Zhang, S.-W. and Zhang, W., ‘The Gross–Kohnen–Zagier theorem over totally real fields’, Compos. Math. 145(5) (2009), 11471162.Google Scholar
Zagier, D. B., ‘Sur la conjecture de Saito–Kurokawa (d’après H Maass)’, in: Seminar on Number Theory, Paris 1979–80, Progress of Mathematics, 12 (Birkhäuser, Boston, 1981), 371394.Google Scholar
Zhang, W., ‘Modularity of generating functions of special cycles on shimura varieties’, PhD Thesis, Columbia University, 2009.Google Scholar
Ziegler, C. D., ‘Jacobi forms of higher degree’, Abh. Math. Semin. Univ. Hambg. 59 (1989), 191224.Google Scholar