Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T18:30:45.204Z Has data issue: false hasContentIssue false

Cytokines and preterm labour

Published online by Cambridge University Press:  10 October 2008

Moshe Mazor
Affiliation:
Perinatology Research Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, U.S.A. Department of Obstetrics and Gynecology, Soroka Medical Center of Kupat Holim, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel.
José Cohen
Affiliation:
Perinatology Research Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, U.S.A.
Roberto Romero*
Affiliation:
Perinatology Research Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, U.S.A.
Fabio Ghezzi
Affiliation:
Perinatology Research Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, U.S.A.
Jorge E Tolosa
Affiliation:
Perinatology Research Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, U.S.A.
Ricardo Gomez
Affiliation:
Perinatology Research Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, U.S.A.
*
Roberto Romero, Perinatology Research Branch, NICHD, Georgetown University Medical Center, OB/GYN Department, PHC 3, 3800 Reservoir Road, NW, Washington DC, 20007

Extract

Preterm labour and its consequences are the major contributors to perinatal morbidity and mortality worldwide. The prevention of preterm labour and delivery is the single most important challenge to modern obstetrics today. Progress in this area has been hampered by lack of understanding of the basic mechanisms responsible for preterm labour. The implicit paradigm which has governed the study of parturition, is that term and preterm labour are fundamentally the same processes except for the gestational age at which they occur. Indeed, they share a common terminal pathway composed of uterine contractility, cervical dilatation and rupture of membranes. We proposed that while term labour is the result of physiological activation of this common terminal pathway, preterm labour and delivery is the consequence of pathological activation.1 Thus, preterm labour may be considered as the response of the fetomaternal unit to a variety of insults (e.g. chorioamnionitis, ischaemia, fetal growth restriction, etc.) (Fig 1) If these insults cannot be effectively handled in the context of a continuing pregnancy, then labour and delivery may occur.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Romero, R, Mazor, M, Muñoz, H, Gomez, R, Galasso, M, Sherer, DM. The preterm labor syndrome. In: Bulletti, C, Gurpide, E, Flamigni, C. The human endometrium. Ann NY Acad Sci 1994; 734: 414–29.CrossRefGoogle Scholar
2Romero, R, Mazor, M. Infection and preterm labor. Clin Obstet Gynecol 1988; 31: 553–84.CrossRefGoogle ScholarPubMed
3Romero, R, Avila, C, Brekus, CA, Mazor, M. The role of systemic and intrauterine infection in preterm parturition. In: Garfield, RE ed, Uterine contractility. Norwell, MA: Serono Symposia 1990: 319–54.Google Scholar
4Romero, R, Muñoz, H, Gomez, R, Galasso, M, Sherer, DM, Cotton, DB et al. Does infection cause premature labor and delivery? Semin Reprod Endocrinol 1994; 12: 227–39.CrossRefGoogle Scholar
5Gomez, R, Ghezzi, F, Romero, R, Muñoz, H, Tolosa, JE, Rojas, I. Premature labor and intraamniotic infection: clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol 1995; 22: 281314.Google Scholar
6Romero, R, Ghidini, A, Mazor, M, Behnke, E. Microbial invasion of the amniotic cavity in premature rupture of membranes. Clin Obstet Gynecol 1991; 34: 769–78.CrossRefGoogle ScholarPubMed
7Kullander, S. Fever and parturition: an experimental study in rabbits. Acta Obstet Gynecol Scand Suppl 1977; 66: 7785.CrossRefGoogle ScholarPubMed
8McKay, DG, Wong, TC. The effect of bacterial endotoxin on the placenta of the rat. Am J Pathol 1963; 42: 357–61.Google Scholar
9Rieder, RF, Thomas, L. Studies on the mechanisms involved in the production of abortion by endotoxin. J Immunol 1960; 84: 189–96.CrossRefGoogle Scholar
10Skarnes, RC, Harper, MJ. Relationship between endotoxin-induced abortion and the synthesis of prostaglandin F. Prostaglandins 1972; 1: 191203.CrossRefGoogle ScholarPubMed
11Takeda, Y, Tsuchiya, I. Studies on the pathological changes caused by the injection of the Shwartzman filtrate and the endotoxin into pregnant animals. II. On the relationship of the constituents of the endotoxin and the abortion-producing factor. Jpn J Exp Med 1953; 23: 105109.Google Scholar
12Zahal, PA, Bjerknes, C. Induction of decidua-placental hemorrhage in mice by the endotoxins of certain gram-negative bacteria. Proc Soc Exp Biol Med 1943; 54: 329–35.CrossRefGoogle Scholar
13Takeda, Y, Tsuchiya, I. Studies on the pathological changes caused by the injection of the Shwartzman filtrate and the endotoxin into pregnant rabbits. Jpn J Exp Med 1953; 21: 914.Google Scholar
14Romero, R, Muñoz, H, Ramirez, M, Araneda, H, Cutright, J, Wolf, N, et al. Antibiotic therapy reduces the rate of infection-induced preterm delivery and perinatal mortality. Am J Obstet Gynecol 1994; 70: 390.Google Scholar
15Cunningham, FG, Morris, GB, Mickal, A. Acute pyelonephritis of pregnancy: a clinical review. Obstet Gynecol 1973; 42: 112–17.Google ScholarPubMed
16Diddle, AW, Stephens, RL. Typhoid fever in pregnancy. Probable intrauterine transmission of the disease. Am J Obstet Gynecol 1938; 38: 300305.CrossRefGoogle Scholar
17Fan, YD, Pastorek, JG, Miller, JM, Mulvey, J. Acute pyelonephritis in pregnancy. Am J Perinatol 1987; 4: 324–26.CrossRefGoogle ScholarPubMed
18Gilles, HM, Lawson, JB, Sibelas, M, Voller, A, Allan, D. Malaria, anaemia and pregnancy. Ann Trop Med Parasitol 1969; 63: 245–63.Google Scholar
19Kass, E. Maternal urinary tract infection. NY State J Med 1962; 1: 2822–35.Google Scholar
20Madinger, NE, Greenspoon, JS, Ellrodt, AG. Pneumonia during pregnancy: has modern technology improved maternal and fetal outcome? Am J Obstet Gynecol 1989; 161: 657–62.CrossRefGoogle ScholarPubMed
21McLane, CM. Pyelitis of pregnancy: a five-year study. Am J Obstet Gynecol 1939; 38: 117–22.CrossRefGoogle Scholar
22Romero, R, Sirtori, M, Oyarzun, E, Avila, C, Mazor, M, Callahan, R, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol 1989; 161: 817–24.CrossRefGoogle ScholarPubMed
23Miller, JM, Pupkin, MJ, Hill, GB. Bacterial colonization of amniotic fluid from intact fetal membranes. Am J Obstet Gynecol 1980; 136: 796804.CrossRefGoogle ScholarPubMed
24Bobitt, JR, Hayslip, CC, Damato, JD. Amniotic fluid infection as determined by transabdominal amniocentesis in patients with intact membranes in premature labor. Am J Obstet Gynecol 1981; 140: 947–52.CrossRefGoogle ScholarPubMed
25Wallace, RL, Herrick, CN. Amniocentesis in the evaluation of premature labor. Obstet Gynecol 1981; 57: 483–86.Google ScholarPubMed
26Hameed, C, Tejani, N, Verma, UL, Archbald, F. Silent chorioamnionitis as a cause of preterm labor refractory to tocolytic therapy. Am J Obstet Gynecol 1984; 149: 726–30.Google Scholar
27Wahbeh, CJ, Hill, GB, Eden, RD, Gall, SA. Intra-amniotic bacterial colonization in premature labor. Am J Obstet Gynecol 1984; 148: 739–43.Google Scholar
28Weible, DR, Randall, HW. Evaluation of amniotic fluid in preterm labor with intact membranes. J Reprod Med 1985; 30: 777–80.Google ScholarPubMed
29Leigh, J, Garite, TJ. Amniocentesis and the management of premature labor. Obstet Gynecol 1986; 67: 500506.Google ScholarPubMed
30Gravett, MG, Hummel, D, Eschenbach, DA, Holmess, KK. Preterm labor associated with subclinical amniotic fluid infection and with bacterial vaginosis. Obstet Gynecol 1986; 67: 229–37.CrossRefGoogle ScholarPubMed
31Iams, JD, Clapp, DH, Contos, DA, Whitehurst, R, Ayers, LW, O'Shaughnessy, RW. Does extra-amniotic infection cause preterm labor? Gas-liquid chromatography studies of amniotic fluid in amnionitis, preterm labor, and normal controls. Obstet Gynecol 1987; 70: 365–68.Google ScholarPubMed
32Duff, P, Kopelman, JN. Subclinical intra-amniotic infection in asymptomatic patients with refractory preterm labor. Obstet Gynecol 1987; 69: 756–59.Google ScholarPubMed
33Romero, R, Emamian, M, Quintero, R, Wam, M, Hobbins, JC, Mazor, M, et al. The value and limitations of the Gram stain examination in the diagnosis of intraamniotic infection. Am J Obstet Gynecol 1988; 159: 114–19.CrossRefGoogle ScholarPubMed
34Skoll, MA, Moretti, ML, Sibai, BM. The incidence of positive amniotic fluid cultures in patients in preterm labor with intact membranes. Am J Obstet Gynecol 1989; 161: 813–16.CrossRefGoogle ScholarPubMed
35Romero, R, Avila, C, Santhanam, U, Sehgal, PB. Amniotic fluid interleukin-6 in preterm labor. J Clin Invest 1990; 85: 1392–400.Google Scholar
36Romero, R, Jimenez, C, Lohda, AK, Nores, J, Hanaoka, S, Avila, C, et al. Amniotic fluid glucose concentrations: a rapid and simple method for the detection of intramniotic infection in preterm labor. Am J Obstet Gynecol 1990; 163: 968–74.CrossRefGoogle Scholar
37Gauthier, DW, Meyer, WJ, Bieniarz, A. Correlation of amniotic fluid glucose concentration and intraamniotic infection in patients with preterm labor or premature rupture of membranes. Am J Obstet Gynecol 1991; 165: 1105–10.CrossRefGoogle ScholarPubMed
38Romero, R, Quintero, R, Nores, J, Avila, C, Mazor, M, Hanaoka, S, et al. Amniotic fluid white blood cell count: a rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery. Am J Obstet Gynecol 1991; 165: 821–30.Google Scholar
39 30. Coultrip, LL, Grossman, JH. Evaluation of rapid diagnostic tests in the detection of microbial invasion of amniotic cavity. Am J Obstet Gynecol 1992; 167: 1231–42.CrossRefGoogle Scholar
40Watts, DH, Krohn, MA, Hillier, SL, Eschenbach, DA. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol 1992; 79: 351–57.CrossRefGoogle ScholarPubMed
41Romero, R, Yoon, BH, Mazor, M, Gomez, R, Diamond, MP, Kenney, JS, et al. The diagnostic and prognostic value of amniotic fluid white blood cell count, glucose, interleukin-6, and Gram stain in patients with preterm labor and intact membranes. Am J Obstet Gynecol 1993; 169: 805–16.Google Scholar
42Garite, TJ, Freeman, RK, Linzey, EM, Braly, P. The use of amniocentesis in patients with premature rupture of membranes. Obstet Gynecol 1979; 54: 226–30.Google ScholarPubMed
43Garite, TJ, Freeman, RK. Chorioamnionitis in the preterm gestation. Obstet Gynecol 1982; 59: 539–45.Google Scholar
44Cotton, DB, Hill, LM, Strassner, HT, Platt, LD, Ledger, WJ. Use of amniocentesis in preterm gestation with ruptured membranes. Obstet Gynecol 1984; 63: 3843.Google ScholarPubMed
45Broekhuizen, FF, Gilman, M, Hamilton, PR. Amniocentesis for gram stain and culture in preterm premature rupture of the membranes. Obstet Gynecol 1985; 66: 316–21.Google Scholar
46Vintzileos, AM, Campbell, WA, Nochimson, DJ, Weinbaum, PJ, Escoto, DT, Mirochnick, MH. Qualitative amniotic fluid volume versus amniocentesis in predicting infection in preterm rupture of the membranes. Obstet Gynecol 1986; 67: 579–83.Google ScholarPubMed
47Feinstein, SJ, Vintzileos, AM, Lodeiro, JG, Campbell, WA, Weinbaum, PJ, Nochimson, DJ. Amniocentesis with premature rupture of membranes. Obstet Gynecol 1986; 68: 147–52.Google Scholar
48Gauthier, DW, Meyer, WJ. Comparison of Gram stain, leukocyte esterase activity, and amniotic fluid glucose concentration in predicting amniotic fluid culture results in preterm premature rupture of membranes. Am J Obstet Gynecol 1992; 167: 1092–95.CrossRefGoogle ScholarPubMed
49Romero, R, Yoon, BH, Mazor, M, Gomez, R, Diamond, MP, Kenny, JS, et al. A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukin-6, and Gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes. Am J Obstet Gynecol 1993; 169: 839–51.CrossRefGoogle ScholarPubMed
50Bejar, R, Curbelo, V, Davis, C, Gluck, L. Premature labor: bacterial sources of phospholipase. Am J Obstet Gynecol 1981; 57: 479–82.Google Scholar
51Bennett, PR, Rose, MP, Myatt, L. Preterm labor: stimulation of arachidonic acid metabolism in human amnion by bacterial products. Am J Obstet Gynecol 1987; 156: 649–55.CrossRefGoogle ScholarPubMed
52Lamont, RF, Rose, M, Elder, MG. Effects of bacterial prostaglandin E production by amnion cells. Lancet 1985; 2: 1131–33.Google Scholar
53McGregor, JA, Lawellin, D, Franco-Buff, A. Phospholipase A2 activity of genital tract flora detected with two substrates. Society for Gynecologic Investigation, Phoenix, AZ. 1985: p88 (A 153).Google Scholar
54Romero, R, Kadar, N, Hobbins, JC, Duff, GW. Infection and labor: the detection of endotoxin in amniotic fluid. Am J Obstet Gynecol 1987; 157: 815–19.CrossRefGoogle ScholarPubMed
55Romero, R, Hobbins, JC, Mitchell, MD. Endotoxin stimulates prostaglandin E2 production by human amnion. Obstet Gynecol 1988; 71: 227–28.Google ScholarPubMed
56Romero, R, Roslansky, P, Oyarzun, E, Wan, M, Emamian, M, Novitsky, TJ, et al. Labor and infection. II. Bacterial endotoxin in amniotic fluid and its relationship to the onset of preterm labor. Am J Obstet Gynecol 1988; 158: 1044–49.Google Scholar
57Romero, R, Quintero, R, Oyarzun, E, Wu, YK, Sabo, V, Mazor, M, et al. Intra-amniotic infection and the onset of labor in preterm premature rupture of membranes. Am J Obstet Gynecol 1988; 159: 661–66.CrossRefGoogle Scholar
58Dudley, DJ, Chen, CL, Hill, RH, Mitchell, MD. Effects of group B streptococci on prostaglandin production by fetal gestational tissues: strain-specific differences. 40th Annual Meeting of the Society for Gynecologic Investigation,Toronto, Ontario, Canada. 1993: p 279 (P194).Google Scholar
59Lamont, RF, Anthony, F, Myatt, L, Booth, L, Furr, PM, Taylor-Robinson, D. Production of prostaglandin E2 by human amnion in vitro in response to addition of media conditioned by micro-organisms associated with chorioamnionitis and preterm labor. Am J Obstet Gynecol 1990; 162: 819–25.Google Scholar
60Romero, R, Edwin, S, Avila, C, Foster, JT, Wu, YK, Mitchell, MD. Prostaglandin production by amnion and decidual cells in response to bacterial products. 36th Annual Meeting of the Society for Gynecologic Investigation,Houston, Texas. 1990: p197 (A202).Google Scholar
61Flescher, E, Shrayer, D, Maizel, A, Fossum, D, Ballester, A, Dang, H, et al. Cytokine regulation of the B cell response to r12kDa B cell growth factor in autoimmune diseases. In: Dinarello, CA, Kluger, MJ, Powanda, MC, Oppenheim, JJ eds, The physiological and pathological effects'of cytokines. New York: Wiley-Liss Inc, 1990: 117–22.Google Scholar
62Reis, LFL, Fujita, T, Lee, TH, Taniguchi, T, Vilcek, J. TNF and IL-1 induce mRNAs for the transcription factors IRF-1 and IRF-2: possible roles in the regulation of IFN-β expression. In: Dinarello, CA, Kluger, MJU, Powanda, MC, Oppenheim, JJ eds. The physiological and pathological effects of cytokines. New York: Wiley-Liss Inc, 1990: 115.Google Scholar
63Gifford, GE, Flick, DA. Natural production and release of tumour necrosis factor. In: Ciba Foundation Symposium,United Kingdom;John Wiley & Sons Ltd. 1987: 314.CrossRefGoogle Scholar
64Cerami, A, Beutler, B. Introduction. In: Beutler, B ed. Tumor necrosis factors. The molecules and their emerging role in medicine. New York: Raven Press, 1992: 110.Google Scholar
65Vilcek, J, Le, J. Immunology of cytokines: an introduction. In: Thompson, A eds. The cytokine handbook. London: Academic Press, 1991: 118.Google Scholar
66Cohen, S, Bigazzi, PE, Yoshida, T. Commentary. Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol 1974; 12: 150–59.Google Scholar
67Watson, J, Aarden, LA, Shaw, J, Paetkau, V. Molecular and quantitative analysis of helper T cell-replacing factors on the induction of antigen-sensitive B and T lymphocytes. J Immunol 1979; 122: 1633–38.CrossRefGoogle ScholarPubMed
68Dinarello, CA. Clinical relevance of interleukin-1 and its multiple biological activities. Bull Inst Pasteur 1987; 85: 267–71.Google Scholar
69Dinarello, CA. Interleukin-1. Rev Infect Dis 1984; 6: 5195.Google Scholar
70Dinarello, CA. Interleukin-1 and interleukin-1 receptor antagonist. Blood 1991; 77: 1627–52.CrossRefGoogle Scholar
71Dinarello, CA. The interleukin-1 family: 10 years of discovery. FASEB J 1994; 8: 1314–25.CrossRefGoogle ScholarPubMed
72Lomedico, PT, Gubler, R, Hellmann, CP, Dukovich, M, Giri, JG, Pan, YCE, et al. Cloning and expression of murine interleukin-1 cDNA in Escherichia coli. Nature 1984; 312: 458–62.Google Scholar
73Auron, PE, Webb, AC, Rosenwasser, LJ, Mucci, SF, Roich, A, Wolff, SM, et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 1984; 81: 7907–11.CrossRefGoogle ScholarPubMed
74March, CJ, Mosley, B, Larsen, A, Cerretti, DP, Braedt, G, Price, V, et al. Cloning sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 1985; 315: 641–45.Google Scholar
75Webb, AC, Collins, KL, Auron, PE. Interleukin-1 gene (IL1) assigned to long arm of human chromosome 2. Lymphokine Res 1986; 5: 7785.Google Scholar
76Dinarello, CA. Interleukin-1. In: Thompson, A, ed. The cytokine handbook San Diego, CA: Academic Press Inc. 1991: 4782.Google Scholar
77Romero, R.LaFranier, D, Duff, G, Durum, S, Anderson, G. Human decidua: a potent source of interleukin-1-like activity. 32nd Annual General Meeting of the Society for Gynecologic Investigation,Phoenix, AZ. 1985: p208 (P363).Google Scholar
78Romero, R, Durum, S, Dinarello, CA, Oyarzun, E, Hobbins, JC, Mitchell, MD. Interleukin-1 stimulates prostaglandin biosynthesis by human amnion. Prostaglandins 1989; 37: 1322.Google Scholar
79Romero, R, Durum, S, Dinarello, C. Interleukin-1: a signal for the initiation of labor in chorioamnionitis. 33rd Annual Meeting of the Society for Gynecologic Investigation,Toronto, Ontario, Canada. 1986.Google Scholar
80Romero, R, Wu, YK, Brody, DT, Oyarzun, E, Duff, GW, Durum, SK. Human decidua: a source of interleukin-1. Obstet Gynecol 1989; 73: 3134.Google ScholarPubMed
81Romero, R, Brody, DT, Oyarzun, E, Mazor, M, Wu, YK, Hobbins, JC, Durum, SK. Infection and labor. III. Interleukin-1: a signal for the onset of parturition. Am J Obstet Gynecol 1989; 160: 1117–23.Google Scholar
82Romero, R, Mazor, M, Brandt, F, Sepulveda, W, Avila, C, Cotton, DB, et al. Interleukin-1α and interleukin-1β in preterm and term human parturition. Am J Reprod Immunol 1992; 27: 117–23.CrossRefGoogle Scholar
83Romero, R, Mazor, M.Tartakovsky, B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol 1991; 165: 969–71.Google Scholar
84Bukowski, R, Scholz, P, Hasan, S, Chwalisz, J. Induction of preterm parturition with interleukin 1α (IL-1α), tumor necrosis factor α (TNF α) and with LPS in guinea pigs. 40th Annual Meeting of the Society for Gynecologic Investigation,Toronto, Ontario, Canada. 1993: S 26:81.Google Scholar
85Fidel, PL, Romero, R, Wolf, N, Cutright, K.Ramirez, M, Araneda, H, et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol 1994; 170: 1467–75.CrossRefGoogle ScholarPubMed
86Kauma, SW. HLA-DR and interleukin-1β (IL-1β)mRNA expression in human decidua 36th Annual Meeting of the Society for Gynecologic Investigation,San Diego, California. 1989: p333 (A504).Google Scholar
87Kauma, SW, Johnson, DE. The expression and localization of interleukin-1β mRNA in chorioamnionitis. Am J Obstet Gynecol 1995 (In press).Google Scholar
88Paulesu, L, King, A, Loke, YW, Cintorino, M, Bellizzi, E, Boraschi, D. Immunohistochemical localization of IL-1α and IL-1γ in normal human placenta. Lymphokine Cytokine Res 1991; 10: 443–48.Google Scholar
89Taniguchi, T, Matsuzaki, N, Kameda, T, Shimoya, K, Jo, T, Saji, F, et al. The enhanced production of placental interleukin-1 during labor and intrauterine infection. Am J Obstet Gynecol 1991; 165: 131–37.CrossRefGoogle ScholarPubMed
90Hertelandy, F, Todd, H, Molnar, M, Romero, R. Cytokine-initiated signal transduction in human myometrium. 40th Annual Meeting of the Society for Gynecologic Investigation.Toronto, Ontario, Canada. 1993: p 131 (S125).Google Scholar
91Bry, K, Lappalainen, U, Hallman, M. Interleukin-1 binding and prostaglandin E2 synthesis by amnion cells in culture: regulation by tumor necrosis factor-α transforming growth factor-β, and interleukin-1 receptor antagonist. Biochim Biophys Acta 1993; 1181: 3136.Google Scholar
92Aggarwal, BB, Kohr, WJ, Hass, PE, Moffat, B, Spencer, SA, Henzel, WJ, et al. Human tumor necrosis factor: production, purification and characterization. J Biol Chem 1985; 260: 2345–54.Google Scholar
93Beutler, B, Cerami, A. Cachectin: more than a tumor necrosis factor. N Engl J Med 1987; 316: 379–85.Google Scholar
94Manogue, KR, van Deventer, SJH, Cerami, A. Tumor necrosis factor alpha or cachectin. In: Thomson, A, ed. The cytokine handbook San Diego, CA. Academic Press Inc., 1991: 241–56.Google Scholar
95Romero, R, Manogue, KR, Mitchell, MD, Wu, YK, Oyarzun, E, Hobbins, JC, et al. Cachectin-tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. Am J Obstet Gynecol 1989; 161: 336–41.CrossRefGoogle ScholarPubMed
96Bry, K, Hallman, M. Synergistic stimulation of amnion cell prostaglandin E2 synthesis by interleukin-1, tumor necrosis factor and products from activated human granulocytes. Prostaglandins Leukotrienes Essent Fatty Acids 1991; 44: 241–45.CrossRefGoogle ScholarPubMed
97Romero, R, Mazor, M, Manogue, K, Oyarzun, E, Cerami, A. Human decidua: a source of tumor necrosis factor. Eur J Obstet Gynecol Reprod Biol 1991; 41: 123–27.CrossRefGoogle ScholarPubMed
98Casey, ML, Cox, SM, Beutler, B, Milewich, L, MacDonald, PC. Cachectin/tumor necrosis factor-formation in human decidua. J Clin Invest 1989; 83: 430–36.Google Scholar
99Romero, R, Mazor, M, Sepulveda, W, Avila, C, Copeland, D, Williams, J. Tumor necrosis factor in term and preterm labor. Am J Obstet Gynecol 1992; 166: 1576–87.CrossRefGoogle Scholar
100Silver, RM, Lohner, S, Chen, CL, Mitchell, MD, Branch, DW. Tumor necrosis factor-α (TNF-α) mediates LPS-induced abortion: evidence from the LPS-resistant murine strain, C3H/HeJ. 40th Annual Meeting of the Society for Gynecologic Investigation,Toronto, Ontario, Canada. 1993: p218 (P71).Google Scholar
101Baumann, P, Romero, R, Berry, S, Gomez, R, McFarlin, B, Araneda, H, et al. Evidence of participation of the soluble tumor necrosis factor receptor I in the host response to intrauterine infection in preterm labor. Am J Reprod Immunol 1993; 30: 184–93.Google Scholar
102Hirano, T. Interleukin-6. In: Thomson, A, ed. The cytokine handbook, San Diego, CA: Academic Press Inc, 1991: 169–90.Google Scholar
103Kishimoto, T, Hibi, M, Murakami, M, Narazaki, M, Saito, M, Taga, T. The molecular biology of interleukin 6 and its receptor. In: Ciba Foundation Symposium.Polyfunctional cytokines; IL-6 and LIF West Sussex, England:John Wiley & Son, 1991: 516.Google Scholar
104Evans, MI, Hajj, SN, Devoe, LD, Angerman, NS, Moawad, AH. C-reactive protein as a predictor of infectious morbidity with premature rupture of membranes. Am J Obstet Gynecol 1980; 138: 648–52.Google Scholar
105Farb, HF, Arnesen, M, Geistler, P, Knox, E. C-reactive protein with premature rupture of membranes and premature labor. Obstet Gynecol 1983; 62: 4951.Google ScholarPubMed
106Handwerker, SM, Tejani, NA, Verma, UL, Archibald, F. Correlation of maternal serum C-reactive protein with outcome of tocolysis. Obstet Gynecol 1984; 63: 220–24.Google ScholarPubMed
107Hawrylyshyn, P, Bernstein, P, Milligan, JE, Soldin, S, Pollard, A, Chir, B, et al. Premature rupture of membranes: the role of C-reactive protein in the prediction of chorioamnionitis. Am J Obstet Gynecol 1983; 147: 240–46.CrossRefGoogle ScholarPubMed
108Potkul, RK, Moawad, AH, Ponto, KL. The association of subclinical infection with preterm labor: the role of C-reactive protein. Am J Obstet Gynecol 1985; 153: 642–45.CrossRefGoogle ScholarPubMed
109Romem, Y, Artal, R. C-reactive protein as a predictor for chorioamnionitis in cases of premature rupture of the membranes. Am J Obstet Gynecol 1984; 150: 546–50.CrossRefGoogle ScholarPubMed
110Mitchell, MD, Dudley, DJ, Edwin, SS, Schiller, SL. Interleukin-6 stimulates prostaglandin production by human amnion and decidual cells. Eur J Pharmacol 1991; 192: 189–91.CrossRefGoogle ScholarPubMed
111Romero, R, Yoon, BH, Kenney, JS, Gomez, R, Allison, SC, Sehgal, PB. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol 1993; 30: 167–83.Google Scholar
112Romero, R, Sepulveda, W, Kenney, JS, Archer, LE, Allison, AC, Sehgal, PB. Interleukin-6 determination in the detection of microbial invasion of the amniotic cavity. In: Ciba Foundation Symposium.Polyfunctional cytokines: IL-6 and LIF. West Sussex, England:John Wiley & Son, 1991: 205–21.Google Scholar
113Matsuzaki, N, Saji, F, Kameda, T, Yoshizaki, K, Okada, T, Sawai, K, et al In vitro and in vivo production of interleukin-6 by fetal mononuclear cells. Clin Immunol Immunopathol 1990; 55: 305–14.Google Scholar
114Liechty, KW, Koenig, JM, Mitchell, MD, Romero, R, Christensen, RD. Production of interleukin-6 by fetal and maternal cells in vivo during intraamniotic infection and in vitro after stimulation with interleukin-1. Pediatr Res 1991; 29: 14.CrossRefGoogle ScholarPubMed
115Yoon, BH, Romero, R, Kim, CJ, Jun, JK, Gomez, R, Choi, JH, et al. Amniotic fluid interleukin-6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal mortality. Am J Obstet Gynecol 1995; 172: 960–70.Google Scholar
116Gomez, R, Romero, R, Galasso, M, Behnke, E, Insunza, A, Cotton, DB. The value of amniotic fluid interleukin-6, white blood cell count, and Gram stain in the diagnosis of microbial invasion of the amniotic cavity in patients at term. Am J Reprod Immunol 1994; 32: 200–10.Google Scholar
117Romero, R, Muñoz, H, Gomez, R, Sherer, DM, Ghezzi, F, Ghidini, A, et al. Two thirds of spontaneous abortion/fetal deaths after genetic midtrimester amniocentesis are the result of a pre-existing subclinical inflammatory process of the amniotic cavity. Am J Obstet Gynecol 1995; 172: 261.Google Scholar
118Garland, JM. Colony stimulating factors. In: Thomson, A, ed. The cytokine handbook. San Diego, CA. Academic Press Inc. 1991: 269300.Google Scholar
119Romero, R, Oyarzun, E, Stanley, ER. Macrophage colony-stimulating factor in amniotic fluid. 36th Annual Meeting of the Society for Gynecologic Investigation,San Diego, CA. 1989: p301 (A439).Google Scholar
120Richmond, A, Balentien, E, Thomas, HG, Flaggs, G, Barton, DE, Spiess, J, et al. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin. EMBO J 1988; 7: 2025–33.Google Scholar
121Sager, R, Haskill, S, Anisowicz, A, Trask, D, Pike, MC. GRO: a novel chemotactic cytokine. In: Westwick, J, ed. Chemotactic cytokines. New York: Plenum Press, 1991; 7377.Google Scholar
122Anisowicz, A, Zajchowski, D, Stenman, G, Sager, R. Functional diversity of GRO gene expression in human fibroblasts and mammary epithelial cells. Proc Natl Acad Sci USA 1988; 85: 9645–49.Google Scholar
123Wen, DZ, Rowland, A, Derynck, R. Expression and secretion of GRO/MGSA by stimulated human endothelial cells. EMBO J 1989; 6: 1761–66.CrossRefGoogle Scholar
124Van Damme, J. Interleukin-8 and related molecules. In: Thomson, A, ed. The cytokine handbook. London, England: Academic Press Inc. 1991: 201–14.Google Scholar
125Romero, R, Ceska, M, Avila, C, Mazor, M, Behnke, E, Lindley, I. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition. Am J Obstet Gynecol 1991; 165: 813–20.Google Scholar
126Kelly, RW, Leask, R, Calder, AA. Choriodecidual production of interleukin-8 and mechanism of parturition. Lancet 1992; 339: 776–77.Google Scholar
127Chwalisz, K, Scholz, P, Hegele-Hartung, C, Roth, G, Bukowski, R. Cervical ripening with the interleukin 1β (IL-1β) and tumor necrosis factor-α(TNF-α) in pregnant guinea pigs. 40th Annual Meeting of the Society for Gynecologic Investigation,Toronto, Ontario, Canada. 1993: p82 (A S27).Google Scholar
128Christman, JW, Blakwell, TR, Cowan, HB, Shepherd, VL, Rinaldo, JE. Endotoxin induces the expression of macrophage inflammatory protein 1α mRNA by rat alveolar and bone marrow-derived macrophages. Am J Respir Cell Mol Biol 1992; 7: 455–61.Google Scholar
129Wolpe, SD, Davatelis, G, Sherry, B, Beutler, B, Hesse, DG, Nguyen, HT, et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 1988; 167: 570–81.CrossRefGoogle ScholarPubMed
130Saukkonen, K, Sande, S, Cioffe, C, Wolpe, S, Sherry, B, Cerami, A, et al. The role of cytokine in the generation of inflammation and tissue damage in experimental Gram-positive meningitis. J Exp Med 1990; 171: 439–48.Google Scholar
131Wang, JM, Sherry, B, Fivash, MJ, Kelvin, DJ, Oppenheim, JJ. Human recombinant macrophage inflammatory protein-1α and -β and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes. J Immunol 1993; 150: 3022–29.CrossRefGoogle Scholar
132Schall, TJ, Bacon, K, Camp, R, Kaspari, JW, Goeddel, DV. Human macrophage inflammatory protein α (MIP-1α) and MIP-1β chemokines attract distinct populations of lymphocytes. J Exp Med 1993; 177: 1821–26.Google Scholar
133Rot, A, Krieger, M, Brunner, T, Bischoff, SC, Schall, TJ, Dahinden, CA. RANTES and macrophage inflammatory protein-1α induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 1992; 176: 1489–95.Google Scholar
134Alam, R, Forsythe, PA, Stafford, S, Lett-Brown, MA, Grant, JA. Macrophage inflammatory protein-1α activates basophils and mast cells. J Exp Med 1992; 176: 781–86.Google Scholar
135Kuna, P, Reddigari, SR, Schall, TJ, Rucinski, D, Sadick, M, Kaplan, AP. Characterization of the human basophil response to cytokines, growth factors, and histamine releasing factors of the intercrine chemokine family. J Immunol 1993; 150: 1932–43.CrossRefGoogle ScholarPubMed
136Fahey, TJ III, Tracey, KJ, Tekamp-Olson, P, Cousens, LS, Jones, WG, Shires, T, et al. Macrophage inflammatory protein-1α modulates macrophage function. J Immunol 1992; 148: 2764–69.CrossRefGoogle Scholar
137Graham, GJ, Wright, EG, Hewick, R, Wolpe, SD, Wilkie, NM, Donaldson, D, et al. Identification and characterization of an inhibitor of hemopoietic stem cell proliferation. Nature 1990; 344: 442–44.Google Scholar
138Broxmeyer, HE, Sherry, B, Cooper, S, Lu, L, Maze, R, Beckmann, MP, et al. Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. J Immunol 1993; 150: 3448–58.Google Scholar
139Romero, R, Gomez, R, Galasso, M, Muñoz, H, Acosta, L, Yoon, BH, et al. . Macrophage inflammatory protein-1α in term and preterm parturition: effect of microbial invasion of the amniotic cavity. Am J Reprod Immunol 1994; 32: 108–113.CrossRefGoogle Scholar
140 Muñoz, H, Romero, R, Ghezzi, F, Cohen, J, Galasso, M, Gomez, R, et al. The diagnostic and prognostic value of macrophage inflammatory protein-1α determinations in patients with preterm labor with intact membranes. Am J Obstet Gynecol 1995; 172: 280.Google Scholar
141Sager, R, Anisowicz, A, Pike, M, Beckman, P, Smith, T. Structural, regulatory, and functional studies of the GRO gene and protein. In: Baggiolini, M, Sorg, C. eds. Interleukin-8/NAP-1 and related chemotactic cytokines Basel: Karger, 1992; 4: 96116.Google Scholar
142Geiser, T, Dewald, B, Ehrengruber, M, Clark-Lewis, F, Baggiolini, M. The interleukin-8-related chemotactic cytokines GROα, GROβ, GROγ activate human neutrophil and basophil leukocytes. J Biol Chem 1993; 268: 15419–24.Google Scholar
143Cohen, J, Ghezzi, F, Romero, R, Ghidini, A, Mazor, M, Tolosa, JE, et al. GROα in the feto-maternal and amniotic fluid compartments during pregnancy and parturition. Am J Reprod Immunol, in press.Google Scholar
144Arent, WP, Welgus, HG, Thompson, RC, Eisenberg, SP. Biological properties of recombinant human monocyte-derived interleukin I receptor antagonist. J Clin Invest 1990; 85: 1694–97.Google Scholar
145Arent, WP. Interleukin I receptor antagonist: a new member of the interleukin family. J Clin Invest 1991; 88: 1445–51.Google Scholar
146Balavoine, JF, de Rochemonteix, B, Williamson, K, Seckinger, P, Cruchaud, A.Dayer, JM. Prostaglandin E2 and collagenase production by fibroblasts and synovial cells is regulated by urine-derived human interleukin 1 and inhibitor(s). J Clin Invest 1986; 78: 1120–24.Google Scholar
147Dinarello, CA, Thompson, RC. Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today 1991; 12: 404–10.Google Scholar
148Romero, R, Sepulveda, W, Mazor, M, Brandt, F, Cotton, DB, Dinarello, CA, et al. The natural interleukin-1 receptor antagonist in term and preterm parturition. Am J Obstet Gynecol 1992; 167: 863–72.Google Scholar
149Fidel, PL, Romero, R, Ramirez, M, Cutright, J, Edwin, SS, LaMarche, S, et al. Interleukin-1 receptor antagonist (IL-1ra) production by human amnion, chorion, and decidua. Am J Reprod Immunol 1994; 32: 17.Google Scholar
150Romero, R, Gomez, R, Galasso, M, Mazor, M, Berry, SM, Quintero, RA, et al. The natural interleukin-1 receptor antagonist in the fetal, maternal, and amniotic fluid compartments: the effect of gestational age, fetal gender, and intrauterine infection. Am J Obstet Gynecol 1994; 171: 912–21.Google Scholar
151Bry, K, Lappalainen, U, Waffarn, F, Teramo, K, Hallman, M. Influence of gender on the concentration of interleukin-1 receptor antagonist in amniotic fluid and in newborn urine. Pediatr Res 1994; 35: 130–34.Google Scholar
152Romero, R, Tartakovsky, B. The natural interleukin-1 receptor antagonist prevents interleukin-1 - induced preterm delivery in mice. Am J Obstet Gynecol 1992; 167: 1041–45.Google Scholar
153Bry, K, Hallman, M. Transforming growth factor-β opposes the stimulatory effects of interleukin-1 and tumor necrosis factor on amnion cell prostaglandin E2 production: implication for preterm labor. Am J Obstet Gynecol 1992; 167: 222–26.CrossRefGoogle ScholarPubMed
154Bry, K, Hallman, M. Transforming growth factor-β2 prevents preterm delivery induced by interleukin-1α and tumor necrosis factor-α in the rabbit. Am J Obstet Gynecol 1993; 168: 1318–22.Google Scholar
155Sherer, DM, Muñoz, H, Cohen, , Ghezzi, F, Gomez, R, Mazor, M, et al. Increased amniotic fluid concentration of transforming growth factor-β1 in preterm but not term parturition. Am J Obstet Gynecol 1995; 172: 218.Google Scholar
156Dudley, DJ, Edwin, S, Chen, CL, Mitchell, MD. Human decidual cells, but not fetal chorion and amnion cells, produce interleukin-10 (IL-10) in response to inflammatory stimuli: a possible fetal escape mechanism. 41st Annual Meeting of the Society for Gynecologic Investigation,Chicago, Illinois. 1994: p182 (P 192).Google Scholar
157Miller, LC, Isa, S, LoPreste, G, Schaller, JG, Dinarello, CA. Neonatal interleukin-1β, interleukin-6, and tumor necrosis factor: cord blood levels and cellular production. J. Pediatr 1990; 117: 961–65.Google Scholar
158deBont, ES, Martens, A, van Raan, J, Samson, G, Fetter, WPF, Okken, A, et al. Tumor necrosis factor α, interleukin-1β, and interleukin-6 plasma levels in neonatal sepsis. Pediatr Res 1993; 33: 380–83.Google Scholar
159Gessler, P, Kirchmann, N, Kietsch-Engel, R, Haas, N, Lasch, P, Kachel, W. Serum concentrations of granulocyte colony-stimulating factor in healthy term and preterm neonates and in those with various diseases including bacterial infections. Blood 1993; 82: 3177–82.Google Scholar
160Russel, ARB, Davies, EG, McGuigan, S, Scopes, GJD, Daly, S, Gordon-Smith, EC. Plasma granulocyte-colony stimulating factor concentrations (G-CSF) in the early neonatal period. Br J Haematol 1994; 86: 642–44.Google Scholar
161Shy, Y; Shen, C, Wang, J, Li, H, Qin, S, Liu, R. Role of tumor necrosis factor in neonatal sepsis. Chin Med Sci J 1994; 9: 4548.Google Scholar
162Roman, J, Fernandez, F, Velasco, F, Rojas, R, Roldan, MR, Terres, A. Serum tumor necrosis factor levels in neonatal sepsis and septic shock. Acta Paediatr 1993; 82: 352–4.Google Scholar
163Damas, P, Reuter, A, Gysen, P, Demonty, J, Lamy, M, Franchimont, P. Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 1989; 17: 975–78.CrossRefGoogle ScholarPubMed
164Murray, JC, McClain, KL, Wearden, ME. Using granulocyte colony-stimulating factor for neutropenia during neonatal sepsis. Arch Pediatr Adolesc Med 1994; 148: 764–66.Google Scholar
165Roberts, RL, Szelc, CM, Scates, SM, Boyd, MT, Soderstrom, KM, Davis, MW, et al. Neutropenia in extremely premature infant treated with recombinant human granulocyte colony-stimulating factor. Am J Dis Child 1991; 145: 808–12.Google Scholar
166Levene, MI, Wigglesworth, JS, Dubowitz, V. Hemorhagic periventricular leukomalacia in the neonate: a real-time ultrasound study. Pediatrics 1983; 71: 794–97.Google Scholar
167Trounce, JQ, Shaw, DE, Levene, MI, Rutter, N. Clinical risk factors and periventricular leukomalacia. Arch Dis Child 1988; 63: 1722.Google Scholar
168Fawer, CL, Calame, A, Furrer, MT. Neurodevelopmental outcome at 12 months of age related to cerebral ultrasound appearance of high risk preterm neonates. Early Hum Dev 1985; 11: 123–32.CrossRefGoogle Scholar
169Stewart, AL, Reynolds, EOR, Hope, PL, Hamilton, PA, Baudin, J, Costello, AM, et al. Probability of neurodevelopmental disorders estimated for US appearance of brains of very preterm infants. Dev Med Child Neurol 1987; 29: 311.Google Scholar
170De Vries, LS, Regev, R, Dubowitz, MS, Whitelaw, A, Aber, VR. Perinatal risk factors for the development of extensive cystic leukomalacia. Am J Dis Child 1988; 142: 732–35.Google Scholar
171Sinha, SK, Davies, JM, Sims, DG, Chiswick, ML. Relation between periventricular haemorrhage and ischaemic brain lesions diagnosed by ultrasound in very preterm infants. Lancet 1985; ii: 1154–56.Google Scholar
172Bejar, R, Wozniak, P, Allard, M, Benirschke, K, Vaucher, Y, Coen, R, et al. Antenatal origin of neurologic damage in newborn infants and preterm infants. Am J Obstet Gynecol 1988; 159: 357–63.Google Scholar
173Verma, U, Tejani, N, Klein, S, Jeanty, W, Dweck, H, Zoma, W, et al. Obstetrical antecedents of neonatal periventricular leukomalacia (PVL). Am J Obstet Gynecol 1994; 170: 264.Google Scholar
174Gilles, FH, Averill, D, Kerr, CS. Neonatal endotoxin encephalopathy. Ann Neurol 1977; 2: 4956.Google Scholar
175Gilles, FH, Leviton, A, Kerr, CS. Susceptibility of neonatal feline telencephalic white matter to a lipopolysaccharide. J Neurol Sci 1976; 27: 183–91.Google Scholar
176Leviton, A. Preterm birth and cerebral palsy; is tumor necrosis factor the missing link? Dev Med Child Neur 1993; 35: 553–58.Google Scholar
177Yoon, BH, Romero, R, Yang, SH, Jun, JK, Choi, JH, Kim, IO, et al. Interleukin-6 concentrations in umbilical cord plasma identify infant at risk for development of white matter brain lesions associated with periventricular leukomalacia. Am J. Obstet Gynecol 1995; 172: 268.Google Scholar
178Ito, A, Hiro, D, Ojima, Y, Mori, Y. Spontaneous production of interleukin-1 like factors from pregnant rabbit uterine cervix. Am J Obstet Gynecol 1988; 159: 261–65.Google Scholar
179Romero, R, Mazor, M, Gomez, R, Gonzalez, R, Galasso, M, Cotton, DB. Cervix, incompetence and premature labor. The fetus; 3: 110.Google Scholar