Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T22:28:53.816Z Has data issue: false hasContentIssue false

Helicobacter pylori virulence factors: subversion of host immune system and development of various clinical outcomes

Published online by Cambridge University Press:  13 June 2023

Roghayeh Mohammadzadeh
Affiliation:
Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Shaho Menbari
Affiliation:
Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
Abbas Pishdadian
Affiliation:
Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
Hadi Farsiani*
Affiliation:
Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
*
Corresponding author: Dr Hadi Farsiani, Email: farsianih@mums.ac.ir

Abstract

Helicobacter pylori (H. pylori) is a worldwide spread bacterium, co-evolving with humans for at least 100 000 years. Despite the uncertainty about the mode of H. pylori transmission, the development of intra-gastric and extra-gastric diseases is attributed to this bacterium. The morphological transformation and production of heterogenic virulence factors enable H. pylori to overcome the harsh stomach environment. Using numerous potent disease-associated virulence factors makes H. pylori a prominent pathogenic bacterium. These bacterial determinants are adhesins (e.g., blood group antigen-binding adhesin (BabA)/sialic acid-binding adhesin (SabA)), enzymes (e.g., urease), toxins (e.g., vacuolating cytotoxin A (VacA)), and effector proteins (e.g., cytotoxin-associated gene A (CagA)) involved in colonisation, immune evasion, and disease induction. H. pylori not only cleverly evades the immune system but also robustly induces immune responses. This insidious bacterium employs various strategies to evade human innate and adaptive immune responses, leading to a life-long infection. Owing to the alteration of surface molecules, innate immune receptors couldn't recognise this bacterium; moreover, modulation of effector T cells subverts adaptive immune response. Most of the infected humans are asymptomatic and only a few of them present severe clinical outcomes. Therefore, the identification of virulence factors will pave the way for the prediction of infection severity and the development of an effective vaccine. H. pylori virulence factors are hereby comprehensively reviewed and the bacterium evasion from the immune response is properly discussed.

Type
Review
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hooi, JK, et al. (2017) Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153(2), 420429.CrossRefGoogle ScholarPubMed
Moodley, Y, et al. (2012) Age of the association between Helicobacter pylori and man. PLoS Pathogen 8(5), e1002693.CrossRefGoogle ScholarPubMed
Camilo, V, Sugiyama, T and Touati, E (2017) Pathogenesis of Helicobacter pylori infection. Helicobacter 22, e12405.CrossRefGoogle ScholarPubMed
Zamani, M, et al. (2018) Systematic review with meta-analysis: the worldwide prevalence of Helicobacter pylori infection. Alimentary pharmacology & therapeutics 47(7), 868876.CrossRefGoogle ScholarPubMed
Burucoa, C and Axon, A (2017) Epidemiology of Helicobacter pylori infection. Helicobacter 22, e12403.CrossRefGoogle ScholarPubMed
Stefano, K, et al. (2018) Helicobacter pylori, transmission routes and recurrence of infection: state of the art. Acta Bio Medica: Atenei Parmensis 89(Suppl. 8), 72.Google Scholar
Kim, N (2016) Prevalence and transmission routes of Helicobacter pylori. In Kim, N (ed.), Helicobacter pylori. Springer, pp. 319.CrossRefGoogle ScholarPubMed
Yokota, SI, et al. (2015) Intrafamilial, preferentially mother-to-child and intraspousal, Helicobacter pylori infection in Japan determined by mutilocus sequence typing and random amplified polymorphic DNA fingerprinting. Helicobacter 20(5), 334342.CrossRefGoogle ScholarPubMed
Sun, Y and Zhang, J (2019) Helicobacter pylori recrudescence and its influencing factors. Journal of Cellular and Molecular Medicine 23(12), 79197925.CrossRefGoogle ScholarPubMed
Zhao, H, et al. (2021) The recurrence rate of Helicobacter pylori in recent 10 years: A systematic review and meta-analysis. Helicobacter 26(6), e12852.Google Scholar
Machlowska, J, et al. (2020) Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. International Journal of Molecular Sciences 21(11), 4012.CrossRefGoogle ScholarPubMed
Abadi, ATB (2017) Strategies used by Helicobacter pylori to establish persistent infection. World Journal of Gastroenterology 23(16), 2870.CrossRefGoogle ScholarPubMed
Aviles-Jimenez, F, et al. (2016) Microbiota studies in the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clinical Microbiology and Infection 22(2), 178, e11-78. e22.CrossRefGoogle ScholarPubMed
Graham, DY, Lu, H and Shiotani, A (2021) Vonoprazan-containing Helicobacter pylori triple therapies contribution to global antimicrobial resistance. Journal of Gastroenterology and Hepatology 36(5), 11591163.CrossRefGoogle ScholarPubMed
Hatakeyama, M (2017) Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proceedings of the Japan Academy. Series B 93(4), 196219.CrossRefGoogle ScholarPubMed
Marshall, BJ and Windsor, HM (2005) The relation of Helicobacter pylori to gastric adenocarcinoma and lymphoma: pathophysiology, epidemiology, screening, clinical presentation, treatment, and prevention. Medical Clinics of North America 89(2), 313344.CrossRefGoogle ScholarPubMed
Ota, H, et al. (2009) Crucial roles of Helicobacter pylori infection in the pathogenesis of gastric cancer and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Rinsho byori. The Japanese Journal of Clinical Pathology 57(9), 861.Google Scholar
Franceschi, F, Covino, M and Roubaud Baudron, C (2019) Helicobacter pylori and extragastric diseases. Helicobacter 24, e12636.CrossRefGoogle ScholarPubMed
Chang, W-L, Yeh, Y-C and Sheu, B-S (2018) The impacts of Helicobacter pylori virulence factors on the development of gastroduodenal diseases. Journal of Biomedical Science 25(1), 19.CrossRefGoogle ScholarPubMed
Ofori, EG, et al. (2019) Helicobacter pylori infection, virulence genes’ distribution and accompanying clinical outcomes: The West Africa situation. BioMed Research International 2019, 7312908.CrossRefGoogle ScholarPubMed
Toh, JW and Wilson, RB (2020) Pathways of gastric carcinogenesis, Helicobacter pylori virulence and interactions with antioxidant systems, vitamin C and phytochemicals. International Journal of Molecular Sciences 21(17), 6451.CrossRefGoogle ScholarPubMed
Wang, F, et al. (2014) Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Letters 345(2), 196202.CrossRefGoogle ScholarPubMed
Assaad, S, et al. (2018) Dietary habits and Helicobacter pylori infection: a cross sectional study at a Lebanese hospital. BMC Gastroenterology 18, 113.CrossRefGoogle Scholar
Baradaran, A, et al. (2021) The association between Helicobacter pylori and obesity: a systematic review and meta-analysis of case–control studies. Clinical Diabetes and Endocrinology 7(1), 111.CrossRefGoogle ScholarPubMed
De Martel, C and Parsonnet, J (2006) Helicobacter pylori infection and gender: a meta-analysis of population-based prevalence surveys. Digestive Diseases and Sciences 51, 22922301.CrossRefGoogle Scholar
Dore, MP, et al. (1999) High prevalence of Helicobacter pylori infection in shepherds. Digestive Diseases and Sciences 44, 11611164.CrossRefGoogle ScholarPubMed
Mastromarino, P, et al. (2005) Does hospital work constitute a risk factor for Helicobacter pylori infection? Journal of Hospital Infection 60(3), 261268.CrossRefGoogle ScholarPubMed
Shatila, M and Thomas, AS (2022) Current and future perspectives in the diagnosis and management of Helicobacter pylori infection. Journal of Clinical Medicine 11(17), 5086.CrossRefGoogle ScholarPubMed
Wang, D, et al. (2019) Alterations in the human gut microbiome associated with Helicobacter pylori infection. FEBS open bio 9(9), 15521560.CrossRefGoogle ScholarPubMed
Baj, J, et al. (2021) Helicobacter pylori virulence factors—mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 10(1), 27.CrossRefGoogle Scholar
Kao, C-Y, Sheu, B-S and Wu, J-J (2016) Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomedical Journal 39(1), 1423.CrossRefGoogle ScholarPubMed
Knorr, J, et al. (2019) Classification of Helicobacter pylori virulence factors: Is CagA a toxin or not? Trends in Microbiology 27(9), 731738.CrossRefGoogle ScholarPubMed
Reshetnyak, VI, Burmistrov, AI and Maev, IV (2021) Helicobacter pylori: Commensal, symbiont or pathogen? World Journal of Gastroenterology 27(7), 545.CrossRefGoogle ScholarPubMed
Reshetnyak, VI and Reshetnyak, TM (2017) Significance of dormant forms of Helicobacter pylori in ulcerogenesis. World Journal of Gastroenterology 23(27), 4867.CrossRefGoogle ScholarPubMed
Săsăran, MO, Meliț, LE and Dobru, ED (2021) MicroRNA modulation of host immune response and inflammation triggered by Helicobacter pylori. International Journal of Molecular Sciences 22(3), 1406.CrossRefGoogle ScholarPubMed
Meliț, LE, et al. (2021) Innate immunity–the hallmark of Helicobacter pylori infection in pediatric chronic gastritis. World Journal of Clinical Cases 9(23), 6686.CrossRefGoogle ScholarPubMed
Guclu, M and Agan, AF (2017) Association of severity of Helicobacter pylori infection with peripheral blood neutrophil to lymphocyte ratio and mean platelet volume. Euroasian Journal of Hepato-Gastroenterology 7(1), 11.CrossRefGoogle ScholarPubMed
Mărginean, CD, Mărginean, CO and Meliț, LE (2022) Helicobacter pylori-related extraintestinal manifestations—myth or reality. Children 9(9), 1352.CrossRefGoogle ScholarPubMed
Peek, RM Jr, Fiske, C and Wilson, KT (2010) Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiological Reviews 90(3), 831858.CrossRefGoogle ScholarPubMed
Wen, S and Moss, SF (2009) Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Letters 282(1), 18.CrossRefGoogle ScholarPubMed
Mohammadzadeh, R, et al. (2022) Designing and development of epitope-based vaccines against Helicobacter pylori. Critical Reviews in Microbiology 48(4), 489512.CrossRefGoogle ScholarPubMed
Alm, RA, et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715), 176180.CrossRefGoogle ScholarPubMed
Tomb JF, WO, Kerlavage, AR, Clayton, RA, Sutton, GG, Fleischmann, RD, et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 389, 539547.CrossRefGoogle Scholar
Cao, D-M, et al. (2016) Comparative genomics of Helicobacter pylori and non-pylori Helicobacter species to identify new regions associated with its pathogenicity and adaptability. BioMed Research International, 6106029.Google ScholarPubMed
Noto, JM, et al. (2018) Pan-genomic analyses identify key Helicobacter pylori pathogenic loci modified by carcinogenic host microenvironments. Gut 67(10), 17931804.CrossRefGoogle ScholarPubMed
Kabamba, ET and Yamaoka, Y (2019) Helicobacter pylori and related virulence factors for gastrointestinal diseases. In Shiotani, A (ed.), Gastric Cancer. Springer, pp. 3150.CrossRefGoogle Scholar
Olbermann, P, et al. (2010) A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genetics 6(8), e1001069.CrossRefGoogle ScholarPubMed
Yamaoka, Y (2010) Mechanisms of disease: Helicobacter pylori virulence factors. Nature Reviews Gastroenterology & hepatology 7(11), 629.CrossRefGoogle ScholarPubMed
Censini, S, et al. (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proceedings of the National Academy of Sciences 93(25), 1464814653.CrossRefGoogle ScholarPubMed
Blomstergren, A, et al. (2004) Comparative analysis of the complete cag pathogenicity island sequence in four Helicobacter pylori isolates. Gene 328, 8593.CrossRefGoogle ScholarPubMed
Backert, S, Tegtmeyer, N and Fischer, W (2015) Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future microbiology 10(6), 955965.CrossRefGoogle ScholarPubMed
Chung, JM, et al. (2020) Structure of the Helicobacter pylori Cag Type IV Secretion System. Biophysical Journal 118(3), 295a.CrossRefGoogle Scholar
Backert, S, et al. (2000) Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cellular microbiology 2(2), 155164.CrossRefGoogle ScholarPubMed
Varga, MG, et al. (2016) Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 35(48), 62626269.CrossRefGoogle ScholarPubMed
Viala, J, et al. (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunology 5(11), 11661174.CrossRefGoogle ScholarPubMed
Akopyants, NS, et al. (1998) Analyses of the cag pathogenicity island of Helicobacter pylori. Molecular Microbiology 28(1), 3753.CrossRefGoogle ScholarPubMed
Patra, R, et al. (2011) Intact cag pathogenicity island of Helicobacter pylori without disease association in Kolkata, India. International Journal of Medical Microbiology 301(4), 293302.CrossRefGoogle ScholarPubMed
Nilsson, C, et al. (2003) Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease. Infection and immunity 71(11), 65736581.CrossRefGoogle ScholarPubMed
Canzian, F, et al. (2020) Genetic polymorphisms in the cag pathogenicity island of Helicobacter pylori and risk of stomach cancer and high-grade premalignant gastric lesions. International Journal of Cancer 147(9), 24372445.CrossRefGoogle ScholarPubMed
Sharndama, HC and Mba, IE (2022) Helicobacter pylori: An up-to-date overview on the virulence and pathogenesis mechanisms. Brazilian Journal of Microbiology, 118.Google ScholarPubMed
Wang, D, et al. (2017) The association between vacA or cagA status and eradication outcome of Helicobacter pylori infection: A meta-analysis. PloS one 12(5), e0177455.CrossRefGoogle ScholarPubMed
Chowdhury, R (2014) Host cell contact induces fur-dependent expression of virulence factors CagA and VacA in Helicobacter pylori. Helicobacter 19(1), 1725.Google Scholar
Noto, JM, et al. (2012) Iron deficiency accelerates Helicobacter pylori–induced carcinogenesis in rodents and humans. The Journal of Clinical Investigation 123(1), 479492.CrossRefGoogle ScholarPubMed
Merrell, DS, et al. (2003) pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infection and immunity 71(6), 35293539.CrossRefGoogle ScholarPubMed
Loh, JT, Torres, VJ and Cover, TL (2007) Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Research 67(10), 47094715.CrossRefGoogle ScholarPubMed
Hayashi, T, et al. (2012) Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host & Microbe 12(1), 2033.CrossRefGoogle ScholarPubMed
Hatakeyama, M (2004) Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Reviews Cancer 4(9), 688694.CrossRefGoogle ScholarPubMed
Hatakeyama, M (2011) Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Science 102(1), 3643.CrossRefGoogle ScholarPubMed
Backert, S and Selbach, M (2005) Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends in Microbiology 13(10), 476484.CrossRefGoogle Scholar
Nagase, L, et al. (2015) Dramatic increase in SHP2 binding activity of Helicobacter pylori Western CagA by EPIYA-C duplication: its implications in gastric carcinogenesis. Scientific Reports 5(1), 15749.CrossRefGoogle ScholarPubMed
Yamazaki, S, et al. (2003) The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. The Journal of Infectious Diseases 187(2), 334337.CrossRefGoogle ScholarPubMed
Tsutsumi, R, et al. (2003) Attenuation of Helicobacter pylori CagA⋅ SHP-2 signaling by interaction between CagA and C-terminal Src kinase. Journal of Biological Chemistry 278(6), 36643670.CrossRefGoogle ScholarPubMed
Suzuki, M, et al. (2005) Interaction of CagA with Crk plays an important role in Helicobacter pylori–induced loss of gastric epithelial cell adhesion. The Journal of Experimental Medicine 202(9), 12351247.CrossRefGoogle ScholarPubMed
Higashi, H, et al. (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295(5555), 683686.CrossRefGoogle ScholarPubMed
Gorrell, RJ, et al. (2013) A novel NOD1-and CagA-independent pathway of interleukin-8 induction mediated by the Helicobacter pylori type IV secretion system. Cellular Microbiology 15(4), 554570.CrossRefGoogle Scholar
Hayashi, T, et al. (2017) Differential mechanisms for SHP2 binding and activation are exploited by geographically distinct Helicobacter pylori CagA oncoproteins. Cell Reports 20(12), 28762890.CrossRefGoogle ScholarPubMed
Hayashi, Y, et al. (2013) CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 62(11), 15361546.CrossRefGoogle ScholarPubMed
Sepulveda, AR, et al. (2010) CpG methylation and reduced expression of O6-methylguanine DNA methyltransferase is associated with Helicobacter pylori infection. Gastroenterology 138(5), 18361844, e4.CrossRefGoogle ScholarPubMed
Tsang, Y, et al. (2010) Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene 29(41), 56435650.CrossRefGoogle ScholarPubMed
Buti, L, et al. (2011) Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proceedings of the National Academy of Sciences 108(22), 92389243.CrossRefGoogle ScholarPubMed
Ren, S, et al. (2006) Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. Journal of Biological Chemistry 281(43), 3234432352.CrossRefGoogle ScholarPubMed
Nishikawa, H, et al. (2016) Impact of structural polymorphism for the Helicobacter pylori CagA oncoprotein on binding to polarity-regulating kinase PAR1b. Scientific Reports 6(1), 113.CrossRefGoogle ScholarPubMed
Javaheri, A, et al. (2016) Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nature Microbiology 2(1), 113.Google Scholar
Königer, V, et al. (2016) Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nature Microbiology 2(1), 112.Google ScholarPubMed
Behrens, I-K, et al. (2020) The HopQ-CEACAM interaction controls CagA translocation, phosphorylation, and phagocytosis of Helicobacter pylori in neutrophils. MBio 11(1), e03256–19.CrossRefGoogle ScholarPubMed
Zhao, Q, et al. (2018) Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathogens 14(10), e1007359.CrossRefGoogle ScholarPubMed
Foegeding, NJ, et al. (2016) An overview of Helicobacter pylori VacA toxin biology. Toxins 8(6), 173.CrossRefGoogle ScholarPubMed
Atherton, JC, et al. (1995) Mosaicism in Vacuolating Cytotoxin Alleles of Helicobacter pylori: ASSOCIATION OF SPECIFIC vacA TYPES WITH CYTOTOXIN PRODUCTION AND PEPTIC ULCERATION (∗). Journal of Biological Chemistry 270(30), 1777117777.CrossRefGoogle ScholarPubMed
Atherton, JC, et al. (1999) Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori comprise two geographically widespread types, m1 and m2, and have evolved through limited recombination. Current Microbiology 39, 211218.CrossRefGoogle ScholarPubMed
Chung, C, et al. (2010) Diversity of VacA intermediate region among Helicobacter pylori strains from several regions of the world. Journal of Clinical Microbiology 48(3), 690696.CrossRefGoogle ScholarPubMed
Pagliaccia, C, et al. (1998) The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proceedings of the National Academy of Sciences 95(17), 1021210217.CrossRefGoogle ScholarPubMed
van Doorn, L-J, et al. (1998) Expanding allelic diversity of Helicobacter pylori vacA. Journal of Clinical Microbiology 36(9), 25972603.CrossRefGoogle ScholarPubMed
Rhead, JL, et al. (2007) A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 133(3), 926936.CrossRefGoogle ScholarPubMed
Letley, DP, et al. (2003) Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. Journal of Biological Chemistry 278(29), 2673426741.CrossRefGoogle ScholarPubMed
Forsyth, M, et al. (1998) Heterogeneity in levels of vacuolating cytotoxin gene (vacA) transcription among Helicobacter pylori strains. Infection and immunity 66(7), 30883094.CrossRefGoogle ScholarPubMed
Atherton, J, et al. (1997) Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112(1), 9299.CrossRefGoogle ScholarPubMed
Ferreira, RM, et al. (2012) A novel method for genotyping the Helicobacter pylori vacA intermediate region directly in gastric biopsy specimens. Journal of Clinical Microbiology 50(12), 39833989.CrossRefGoogle ScholarPubMed
Ferreira, RM, Machado, JC and Figueiredo, C (2014) Clinical relevance of Helicobacter pylori vacA and cagA genotypes in gastric carcinoma. Best Practice & Research Clinical Gastroenterology 28(6), 10031015.CrossRefGoogle ScholarPubMed
Ogiwara, H, et al. (2009) Role of deletion located between the intermediate and middle regions of the Helicobacter pylori vacA gene in cases of gastroduodenal diseases. Journal of Clinical Microbiology 47(11), 34933500.CrossRefGoogle ScholarPubMed
Bakhti, SZ, et al. (2016) Relevance of Helicobacter pylori vacA 3ʹ-end region polymorphism to gastric cancer. Helicobacter 21(4), 305316.CrossRefGoogle ScholarPubMed
Amilon, KR, et al. (2015) Expression of the Helicobacter pylori virulence factor vacuolating cytotoxin A (vac A) is influenced by a potential stem-loop structure in the 5′ untranslated region of the transcript. Molecular Microbiology 98(5), 831846.CrossRefGoogle Scholar
Gancz, H, Jones, KR and Merrell, DS (2008) Sodium chloride affects Helicobacter pylori growth and gene expression. Journal of Bacteriology 190(11), 41004105.CrossRefGoogle ScholarPubMed
Merrell, DS, et al. (2003) Growth phase-dependent response of Helicobacter pylori to iron starvation. Infection and Immunity 71(11), 65106525.CrossRefGoogle ScholarPubMed
van Amsterdam, K, et al. (2003) Induced Helicobacter pylori vacuolating cytotoxin VacA expression after initial colonisation of human gastric epithelial cells. FEMS Immunology & Medical Microbiology 39(3), 251256.CrossRefGoogle ScholarPubMed
Torres, VJ, McClain, MS and Cover, TL (2004) Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA). Journal of Biological Chemistry 279(3), 23242331.CrossRefGoogle ScholarPubMed
Yahiro, K, et al. (2015) Helicobacter pylori VacA toxin causes cell death by inducing accumulation of cytoplasmic connexin 43. Nature Publishing Group.CrossRefGoogle Scholar
Chauhan, N, et al. (2019) Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: An overview. Helicobacter 24(1), e12544.CrossRefGoogle Scholar
Fischer, W, et al. (2001) Outer membrane targeting of passenger proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori. Infection and immunity 69(11), 67696775.CrossRefGoogle ScholarPubMed
McClain, MS, Beckett, AC and Cover, TL (2017) Helicobacter pylori vacuolating toxin and gastric cancer. Toxins 9(10), 316.CrossRefGoogle ScholarPubMed
Yahiro, K, et al. (2016) New insights into VacA intoxication mediated through its cell surface receptors. Toxins 8(5), 152.CrossRefGoogle ScholarPubMed
Terebiznik, MR, et al. (2009) Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 5(3), 370379.CrossRefGoogle ScholarPubMed
Sundrud, MS, et al. (2004) Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proceedings of the National Academy of Sciences 101(20), 77277732.CrossRefGoogle Scholar
Radin, JN, et al. (2011) Helicobacter pylori VacA induces programmed necrosis in gastric epithelial cells. Infection and Immunity 79(7), 25352543.CrossRefGoogle ScholarPubMed
McClain, MS, et al. (2003) Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. Journal of Biological Chemistry 278(14), 1210112108.CrossRefGoogle ScholarPubMed
Hisatsune, J, Masaaki Nakayama, EY, Shirasaka, D, Kurazono, H, Katagata, Y, Inoue, H, Han, J, Sap, J, Yahiro, K, Moss, J and Hirayama, T (2007) Helicobacter pylori VacA enhances prostaglandin E2 production through induction of cyclooxygenase 2 expression via a p38 mitogen-activated protein kinase/activating transcription factor 2 cascade in AZ-521 cells. Infection and Immunity 75(9).CrossRefGoogle Scholar
Jain, P, Luo, Z-Q and Blanke, SR (2011) Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. Proceedings of the National Academy of Sciences 108(38), 1603216037.CrossRefGoogle ScholarPubMed
Domańska, G, et al. (2010) Helicobacter pylori VacA toxin/subunit p34: targeting of an anion channel to the inner mitochondrial membrane. PLoS Pathogens 6(4), e1000878.CrossRefGoogle ScholarPubMed
McClain, MS, et al. (2001) A 12-amino-acid segment, present in type s2 but not type s1 Helicobacter pylori VacA proteins, abolishes cytotoxin activity and alters membrane channel formation. Journal of Bacteriology 183(22), 64996508.CrossRefGoogle Scholar
Torres, VJ, et al. (2007) Helicobacter pylori vacuolating cytotoxin inhibits activation-induced proliferation of human T and B lymphocyte subsets. The Journal of Immunology 179(8), 54335440.CrossRefGoogle Scholar
Greenfield, LK and Jones, NL (2013) Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends in Microbiology 21(11), 602612.CrossRefGoogle ScholarPubMed
Raju, D, et al. (2012) Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142(5), 11601171.CrossRefGoogle ScholarPubMed
Ricci, V (2016) Relationship between VacA toxin and host cell autophagy in Helicobacter pylori infection of the human stomach: a few answers, many questions. Toxins 8(7), 203.CrossRefGoogle ScholarPubMed
Tegtmeyer, N, et al. (2009) Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA. Cellular Microbiology 11(3), 488505.CrossRefGoogle ScholarPubMed
Tsugawa, H, et al. (2012) Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host & Microbe 12(6), 764777.CrossRefGoogle ScholarPubMed
Abdullah, M, et al. (2019) VacA promotes CagA accumulation in gastric epithelial cells during Helicobacter pylori infection. Scientific Reports 9(1), 19.CrossRefGoogle ScholarPubMed
Li, N, et al. (2017) Helicobacter pylori CagA protein negatively regulates autophagy and promotes inflammatory response via c-Met-PI3 K/Akt-mTOR signaling pathway. Frontiers in Cellular and Infection Microbiology 7, 417.CrossRefGoogle Scholar
Akada, JK, et al. (2010) Helicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells. Disease Models & Mechanisms 3(9-10), 605617.CrossRefGoogle ScholarPubMed
Yokoyama, K, et al. (2005) Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proceedings of the National Academy of Sciences 102(27), 96619666.CrossRefGoogle ScholarPubMed
Tan, S, et al. (2011) Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathogens 7(5), e1002050.CrossRefGoogle ScholarPubMed
Ansari, S and Yamaoka, Y (2020) Helicobacter pylori virulence factor cytotoxin-associated Gene A (CagA)-mediated gastric pathogenicity. International Journal of Molecular Sciences 21(19), 7430.CrossRefGoogle ScholarPubMed
Voland, P, et al. (2006) Human immune response towards recombinant Helicobacter pylori urease and cellular fractions. Vaccine 24(18), 38323839.CrossRefGoogle ScholarPubMed
Akada, JK, et al. (2000) Identification of the urease operon in Helicobacter pylori and its control by mRNA decay in response to pH. Molecular Microbiology 36(5), 10711084.CrossRefGoogle ScholarPubMed
Marcus, EA, Sachs, G and Scott, DR (2018) Acid-regulated gene expression of Helicobacter pylori: insight into acid protection and gastric colonization. Helicobacter 23(3), e12490.CrossRefGoogle ScholarPubMed
Weeks, DL, et al. (2000) A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287(5452), 482485.CrossRefGoogle ScholarPubMed
Belzer, C, et al. (2005) Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology 151(12), 39893995.CrossRefGoogle ScholarPubMed
Allen, MG, et al. (2023) Regulation of Helicobacter pylori urease and acetone carboxylase genes by nitric oxide and the CrdRS two-component system. Microbiology Spectrum, e04633–22.Google ScholarPubMed
Strugatsky, D, et al. (2013) Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature 493(7431), 255258.CrossRefGoogle ScholarPubMed
Ha, N-C, et al. (2001) Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature Structural Biology 8(6), 505509.CrossRefGoogle ScholarPubMed
Dunn, BE and Phadnis, SH (1998) Structure, function and localization of Helicobacter pylori urease. The Yale Journal of Biology and Medicine 71(2), 63.Google ScholarPubMed
Lytton, SD, et al. (2005) Production of ammonium by Helicobacter pylori mediates occludin processing and disruption of tight junctions in Caco-2 cells. Microbiology 151(10), 32673276.CrossRefGoogle ScholarPubMed
Schoep, TD, et al. (2010) Surface properties of Helicobacter pylori urease complex are essential for persistence. PloS one 5(11), e15042.CrossRefGoogle ScholarPubMed
Celli, JP, et al. (2009) Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proceedings of the National Academy of Sciences 106(34), 1432114326.CrossRefGoogle ScholarPubMed
Scott, DR, et al. (1998) The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114(1), 5870.CrossRefGoogle ScholarPubMed
Ghalehnoei, H, et al. (2016) Relationship between ureB sequence diversity, urease activity and genotypic variations of different Helicobacter pylori strains in patients with gastric disorders. Polish journal of microbiology 65(2).CrossRefGoogle ScholarPubMed
Oleastro, M and Ménard, A (2013) The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology 2(3), 11101134.CrossRefGoogle ScholarPubMed
Xu, C, et al. (2020) Virulence of Helicobacter pylori outer membrane proteins: an updated review. European Journal of Clinical Microbiology & Infectious Diseases 39, 18211830.CrossRefGoogle ScholarPubMed
Doohan, D, et al. (2021) Helicobacter pylori BabA–SabA key roles in the adherence phase: The synergic mechanism for successful colonization and disease development. Toxins 13(7), 485.CrossRefGoogle ScholarPubMed
Ansari, S and Yamaoka, Y (2017) Helicobacter pylori BabA in adaptation for gastric colonization. World Journal of Gastroenterology 23(23), 4158.CrossRefGoogle ScholarPubMed
Moonens, K, et al. (2016) Structural insights into polymorphic ABO glycan binding by Helicobacter pylori. Cell Host & Microbe 19(1), 5566.CrossRefGoogle ScholarPubMed
Hage, N, et al. (2015) Structural basis of Lewisb antigen binding by the Helicobacter pylori adhesin BabA. Science Advances 1(7), e1500315.CrossRefGoogle ScholarPubMed
Rad, R, et al. (2002) The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. The Journal of Immunology 168(6), 30333041.CrossRefGoogle ScholarPubMed
Ishijima, N, et al. (2011) BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. Journal of Biological Chemistry 286(28), 2525625264.CrossRefGoogle ScholarPubMed
Saberi, S, et al. (2016) Helicobacter pylori strains from duodenal ulcer patients exhibit mixed babA/B genotypes with low levels of BabA adhesin and Lewis b binding. Digestive Diseases and Sciences 61(10), 28682877.CrossRefGoogle ScholarPubMed
Chen, M-Y, et al. (2013) Association of Helicobacter pylori babA2 with peptic ulcer disease and gastric cancer. World Journal of Gastroenterology 19(26), 4242.CrossRefGoogle ScholarPubMed
Mahdavi, J, et al. (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297(5581), 573578.CrossRefGoogle ScholarPubMed
Pang, SS, et al. (2014) The three-dimensional structure of the extracellular adhesion domain of the sialic acid-binding adhesin SabA from Helicobacter pylori. Journal of Biological Chemistry 289(10), 63326340.CrossRefGoogle ScholarPubMed
Sheu, B-S, et al. (2006) Interaction between host gastric Sialyl-Lewis X and Helicobacter pylori SabA enhances H. pylori density in patients lacking gastric Lewis B antigen. Official journal of the American College of Gastroenterology 101(1), 3644.CrossRefGoogle ScholarPubMed
Yanai, A, et al. (2007) Clinical relevance of Helicobacter pylori sabA genotype in Japanese clinical isolates. Journal of gastroenterology and hepatology 22(12), 22282232.CrossRefGoogle ScholarPubMed
Sáenz, JB, Vargas, N and Mills, JC (2019) Tropism for spasmolytic polypeptide-expressing metaplasia allows Helicobacter pylori to expand its intragastric niche. Gastroenterology 156(1), 160174, e7.CrossRefGoogle ScholarPubMed
Keikha, M, et al. (2019) Potential antigen candidates for subunit vaccine development against Helicobacter pylori infection. Journal of Cellular Physiology 234(12), 2146021470.CrossRefGoogle ScholarPubMed
Naz, A, et al. (2015) Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infection, Genetics and Evolution 32, 280291.CrossRefGoogle ScholarPubMed
Urrutia-Baca, VH, et al. (2019) Immunoinformatics approach to design a novel epitope-based oral vaccine against Helicobacter pylori. Journal of Computational Biology 26(10), 11771190.CrossRefGoogle ScholarPubMed
Ricci, V, et al. (2014) Helicobacter pylori gamma-glutamyl transpeptidase and its pathogenic role. World Journal of Gastroenterology 20(3), 630.CrossRefGoogle ScholarPubMed
McGovern, K, et al. (2001) γ-Glutamyltransferase is a Helicobacter pylori virulence factor but is not essential for colonization. Infection and Immunity 69(6), 41684173.CrossRefGoogle Scholar
Oertli, M, et al. (2013) Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proceedings of the National Academy of Sciences 110(8), 30473052.CrossRefGoogle ScholarPubMed
Gong, M, et al. (2010) Helicobacter pylori γ-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastroenterology 139(2), 564573.CrossRefGoogle ScholarPubMed
Flahou, B, et al. (2011) Gastric epithelial cell death caused by Helicobacter suis and Helicobacter pylori γ-glutamyl transpeptidase is mainly glutathione degradation-dependent. Cellular Microbiology 13(12), 19331955.CrossRefGoogle ScholarPubMed
Wessler, S (2016) Emerging novel virulence factors of Helicobacter pylori. In Helicobacter pylori Research. Springer, pp. 165188.CrossRefGoogle Scholar
Schmees, C, et al. (2007) Inhibition of T-cell proliferation by Helicobacter pylori γ-glutamyl transpeptidase. Gastroenterology 132(5), 18201833.CrossRefGoogle ScholarPubMed
Kim, K-M, et al. (2010) Helicobacter pylori γ-glutamyltranspeptidase induces cell cycle arrest at the G1-S phase transition. The Journal of Microbiology 48(3), 372377.CrossRefGoogle ScholarPubMed
Engler, DB, et al. (2014) Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10. Proceedings of the National Academy of Sciences 111(32), 1181011815.CrossRefGoogle ScholarPubMed
Suganuma, M, et al. (2008) TNF-α-inducing protein, a carcinogenic factor secreted from Helicobacter pylori, enters gastric cancer cells. International Journal of Cancer 123(1), 117122.CrossRefGoogle ScholarPubMed
Kuzuhara, T, et al. (2005) Presence of a motif conserved between Helicobacter pylori TNF-α inducing protein (Tipα) and penicillin-binding proteins. Biological and Pharmaceutical Bulletin 28(11), 21332137.CrossRefGoogle ScholarPubMed
Suganuma, M, et al. (2006) Carcinogenic role of tumor necrosis factor-alpha inducing protein of Helicobacter pylori in human stomach. Journal of Biochemistry and Molecular Biology 39(1), 1.Google ScholarPubMed
Gao, M, et al. (2012) Crystal structure of TNF-α-inducing protein from Helicobacter pylori in active form reveals the intrinsic molecular flexibility for unique DNA-binding. PLoS ONE 7(7), e41871.CrossRefGoogle ScholarPubMed
Jang, JY, et al. (2009) Crystal structure of the TNF-α-inducing protein (Tipα) from Helicobacter pylori: insights into Its DNA-binding activity. Journal of Molecular Biology 392(1), 191197.CrossRefGoogle ScholarPubMed
Backert, S, Tegtmeyer, N and Selbach, M (2010) The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. Helicobacter 15(3), 163176.CrossRefGoogle ScholarPubMed
Kuzuhara, T, et al. (2007a) Helicobacter pylori-secreting protein Tipα is a potent inducer of chemokine gene expressions in stomach cancer cells. Journal of Cancer Research and Clinical Oncology 133(5), 287296.CrossRefGoogle ScholarPubMed
Suganuma, M, et al. (2005) New tumor necrosis factor-α-inducing protein released from Helicobacter pylori for gastric cancer progression. Journal of Cancer Research and Clinical Oncology 131(5), 305313.CrossRefGoogle ScholarPubMed
Bauer, J, et al. (2012) Lymphotoxin, NF-ĸB, and cancer: the dark side of cytokines. Digestive Diseases 30(5), 453468.CrossRefGoogle ScholarPubMed
Morningstar-Wright, L, et al. (2022) The TNF-alpha inducing protein is associated with gastric inflammation and hyperplasia in a murine model of Helicobacter pylori infection. Frontiers in Pharmacology 13, 241.CrossRefGoogle Scholar
Godlewska, R, et al. (2008) Tip-α (hp0596 gene product) is a highly immunogenic Helicobacter pylori protein involved in colonization of mouse gastric mucosa. Current Microbiology 56(3), 279286.CrossRefGoogle ScholarPubMed
Watanabe, T, et al. (2010) Nucleolin as cell surface receptor for tumor necrosis factor-α inducing protein: a carcinogenic factor of Helicobacter pylori. Journal of Cancer Research and Clinical Oncology 136(6), 911921.CrossRefGoogle ScholarPubMed
Fujiki, H, Watanabe, T and Suganuma, M (2014) Cell-surface nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. Journal of Cancer Research and Clinical Oncology 140(5), 689699.CrossRefGoogle ScholarPubMed
Suganuma, M, et al. (2007) The unique carcinogenic factor Tipα in cancer microenvironment of Helicobacter pylori infection. Proc. AACR Annual Meeting 48(2007), 1337.Google Scholar
Kuzuhara, T, et al. (2007b) DNA-binding activity of TNF-α inducing protein from Helicobacter pylori. Biochemical and Biophysical Research Communications 362(4), 805810.CrossRefGoogle ScholarPubMed
Krzyżek, P and Gościniak, G (2018) Morphology of Helicobacter pylori as a result of peptidoglycan and cytoskeleton rearrangements. Przeglad Gastroenterologiczny 13(3), 182.Google ScholarPubMed
Azevedo, N, et al. (2007) Coccoid form of Helicobacter pylori as a morphological manifestation of cell adaptation to the environment. Applied and Environmental Microbiology 73(10), 34233427.CrossRefGoogle ScholarPubMed
Elhariri, M, et al. (2018) Occurrence of cagA+ vacA s1a m1 i1 Helicobacter pylori in farm animals in Egypt and ability to survive in experimentally contaminated UHT milk. Scientific Reports 8(1), 14260.CrossRefGoogle ScholarPubMed
Sisto, F, et al. (2000) Helicobacter pylori: ureA, cagA and vacA expression during conversion to the coccoid form. International Journal of Antimicrobial Agents 15(4), 277282.CrossRefGoogle Scholar
Saxena, A, Mukhopadhyay, AK and Nandi, SP (2020) Helicobacter pylori: Perturbation and restoration of gut microbiome. Journal of Biosciences 45, 115.CrossRefGoogle ScholarPubMed
Loke, MF, et al. (2016) Understanding the dimorphic lifestyles of human gastric pathogen Helicobacter pylori using the SWATH-based proteomics approach. Scientific Reports 6(1), 18.CrossRefGoogle ScholarPubMed
Krzyżek, P and Grande, R (2020) Transformation of Helicobacter pylori into coccoid forms as a challenge for research determining activity of antimicrobial substances. Pathogens 9(3), 184.CrossRefGoogle ScholarPubMed
Kadkhodaei, S, Siavoshi, F and Akbari Noghabi, K (2020) Mucoid and coccoid Helicobacter pylori with fast growth and antibiotic resistance. Helicobacter 25(2), e12678.CrossRefGoogle ScholarPubMed
Chaput, C, et al. (2006) Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape. PLoS pathogens 2(9), e97.CrossRefGoogle ScholarPubMed
Krzyżek, P, et al. (2021) Myricetin as an antivirulence compound interfering with a morphological transformation into coccoid forms and potentiating activity of antibiotics against Helicobacter pylori. International Journal of Molecular Sciences 22(5), 2695.CrossRefGoogle ScholarPubMed
Shahamat, M, et al. (1993) Use of autoradiography to assess viability of Helicobacter pylori in water. Applied and Environmental Microbiology 59(4), 12311235.CrossRefGoogle ScholarPubMed
Ng, BL, et al. (2003) Immune responses to differentiated forms of Helicobacter pylori in children with epigastric pain. Clinical and Vaccine Immunology 10(5), 866869.CrossRefGoogle ScholarPubMed
Mizoguchi, H, et al. (1998) Diversity in protein synthesis and viability of Helicobacter pylori coccoid forms in response to various stimuli. Infection and Immunity 66(11), 55555560.CrossRefGoogle ScholarPubMed
Cellini, L, et al. (1994) Helicobacter pylori a fickle germ. Microbiology and Immunology 38(1), 2530.CrossRefGoogle ScholarPubMed
Catrenich, C and Makin, K (1991) Characterization of the morphologic conversion of Helicobacter pylori from bacillary to coccoid forms. Scandinavian Journal of Gastroenterology 26(Supp.181), 5864.CrossRefGoogle Scholar
Bode, G, Mauch, F and Malfertheiner, P (1993) The coccoid forms of Helicobacter pylori. Criteria for their viability. Epidemiology & Infection 111(3), 483490.CrossRefGoogle ScholarPubMed
Rossetti, V, et al. (2013) Phenotypic diversity of multicellular filamentation in oral streptococci. PLoS ONE 8(9), e76221.CrossRefGoogle ScholarPubMed
Krzyżek, P, Biernat, MM and Gościniak, G (2019) Intensive formation of coccoid forms as a feature strongly associated with highly pathogenic Helicobacter pylori strains. Folia Microbiologica 64(3), 273281.CrossRefGoogle ScholarPubMed
Ricci, V, Romano, M and Boquet, P (2011) Molecular cross-talk between Helicobacter pylori and human gastric mucosa. World Journal of Gastroenterology 17(11), 1383.CrossRefGoogle ScholarPubMed
Dubois, A and Borén, T (2007) Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cellular Microbiology 9(5), 11081116.CrossRefGoogle ScholarPubMed
Lina, TT, et al. (2014) Immune evasion strategies used by Helicobacter pylori. World Journal of Gastroenterology 20(36), 12753.CrossRefGoogle ScholarPubMed
Sijmons, D, et al. (2022) Helicobacter pylori and the role of lipopolysaccharide variation in innate immune evasion. Frontiers in Immunology 13(13), 868225.CrossRefGoogle ScholarPubMed
Neuper, T, et al. (2022) Beyond the gastric epithelium—the paradox of Helicobacter pylori-induced immune responses. Current Opinion in Immunology 76, 102208.CrossRefGoogle ScholarPubMed
Kaebisch, R, et al. (2014) Helicobacter pylori cytotoxin-associated gene A impairs human dendritic cell maturation and function through IL-10–mediated activation of STAT3. The Journal of Immunology 192(1), 316323.CrossRefGoogle ScholarPubMed
Käbisch, R, et al. (2016) Helicobacter pylori γ-glutamyltranspeptidase induces tolerogenic human dendritic cells by activation of glutamate receptors. The Journal of Immunology 196(10), 42464252.CrossRefGoogle ScholarPubMed
Frauenlob, T, et al. (2022) Helicobacter pylori infection of primary human monocytes boosts subsequent immune responses to LPS. Frontiers in Immunology 13, 847958.CrossRefGoogle ScholarPubMed
Altobelli, A, et al. (2019) Helicobacter pylori VacA targets myeloid cells in the gastric lamina propria to promote peripherally induced regulatory T-cell differentiation and persistent infection. MBio 10(2), e00261–19.CrossRefGoogle ScholarPubMed
Kawai, T and Akira, S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5), 637650.CrossRefGoogle ScholarPubMed
Castaño-Rodríguez, N, Kaakoush, NO and Mitchell, HM (2014) Pattern-recognition receptors and gastric cancer. Frontiers in Immunology 5, 336.Google ScholarPubMed
Mogensen, TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews 22(2), 240273.CrossRefGoogle ScholarPubMed
Akira, S, Uematsu, S and Takeuchi, O (2006) Pathogen recognition and innate immunity. Cell 124(4), 783801.CrossRefGoogle ScholarPubMed
Takeuchi O, AS (2010) Pattern recognition receptors and inflammation. Cell 140(6), 805820.CrossRefGoogle ScholarPubMed
Takeda, K and Akira, S (2004) TLR signaling pathways. Seminars in Immunology 16, 39.CrossRefGoogle ScholarPubMed
Neuper, T, et al. (2020) TLR2, TLR4 and TLR10 shape the cytokine and chemokine release of Helicobacter pylori -infected human DCs. International Journal of Molecular Sciences 21(11), 3897.CrossRefGoogle ScholarPubMed
Kumar Pachathundikandi, S, et al. (2011) Induction of TLR-2 and TLR-5 expression by Helicobacter pylori switches cag PAI-dependent signalling leading to the secretion of IL-8 and TNF-α. PLoS ONE 6(5), e19614.CrossRefGoogle Scholar
Koch, KN, et al. (2015) Helicobacter urease–induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma. The Journal of Clinical Investigation 125(8), 32973302.CrossRefGoogle ScholarPubMed
Müller, A and Hartung, ML (2016) Helicobacter pylori and the Host Immune Response. In Helicobacter pylori Research. Springer, pp. 299323.CrossRefGoogle Scholar
Cullen, TW, et al. (2011) Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathogens 7(12), e1002454.CrossRefGoogle ScholarPubMed
Schmidinger, B, et al. (2022) Helicobacter pylori binds human Annexins via Lipopolysaccharide to interfere with Toll-like receptor 4 signaling. PLoS Pathogens 18(2), e1010326.CrossRefGoogle ScholarPubMed
Andersen-Nissen, E, et al. (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proceedings of the National Academy of Sciences 102(26), 92479252.CrossRefGoogle ScholarPubMed
Smith, MF, et al. (2003) Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. Journal of Biological Chemistry 278(35), 3255232560.CrossRefGoogle Scholar
Hemmi H, TO, Kawai, T, Kaisho, T, Sato, S, Sanjo, H, Matsumoto, M, Hoshino, K, Wagner, H, Takeda, K and Akira, S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813), 740745.CrossRefGoogle ScholarPubMed
Otani, K, et al. (2012) Toll-like receptor 9 signaling has anti-inflammatory effects on the early phase of Helicobacter pylori-induced gastritis. Biochemical and Biophysical Research Communications 426(3), 342349.CrossRefGoogle ScholarPubMed
Varga, MG, et al. (2016) TLR9 activation suppresses inflammation in response to Helicobacter pylori infection. American Journal of Physiology-Gastrointestinal and Liver Physiology 311(5), G852G858.CrossRefGoogle ScholarPubMed
Sun, X, et al. (2013) TLR2 mediates Helicobacter pylori-induced tolerogenic immune response in mice. PLoS ONE 8(9), e74595.CrossRefGoogle ScholarPubMed
Lee, CYQ, et al. (2022) Helicobacter pylori infection elicits Type I interferon response in human monocytes via toll-like receptor 8 signaling. Journal of Immunology Research, 3861518.Google ScholarPubMed
Rad, R, et al. (2009) Extracellular and intracellular pattern recognition receptors cooperate in the recognition of Helicobacter pylori. Gastroenterology 136(7), 22472257.CrossRefGoogle ScholarPubMed
Dooyema, SD, et al. (2022) Helicobacter pylori actively suppresses innate immune nucleic acid receptors. Gut Microbes 14(1), 2105102.CrossRefGoogle ScholarPubMed
Gringhuis, SI, et al. (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nature Immunology 10(10), 10811088.CrossRefGoogle ScholarPubMed
Devi, S, Rajakumara, E and Ahmed, N (2015) Induction of Mincle by Helicobacter pylori and consequent anti-inflammatory signaling denote a bacterial survival strategy. Scientific Reports 5, 15049.CrossRefGoogle ScholarPubMed
Girardin, SE, et al. (2003a) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300(5625), 15841587.CrossRefGoogle ScholarPubMed
Girardin, SE, et al. (2003b) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. Journal of Biological Chemistry 278(11), 88698872.CrossRefGoogle ScholarPubMed
Liu, W, et al. (2010) Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proceedings of the National Academy of Sciences 107(24), 1105611061.CrossRefGoogle ScholarPubMed
Minaga, K, et al. (2018) Nucleotide-binding oligomerization domain 1 and Helicobacter pylori infection: A review. World Journal of Gastroenterology 24(16), 1725.CrossRefGoogle ScholarPubMed
Suarez, G, et al. (2019) Nod1 imprints inflammatory and carcinogenic responses toward the gastric pathogen Helicobacter pylori. Cancer Research 79(7), 16001611.CrossRefGoogle ScholarPubMed
Pfannkuch, L, et al. (2019) ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. The FASEB Journal 33(8), 90879099.CrossRefGoogle ScholarPubMed
Zimmermann, S, et al. (2017) ALPK1-and TIFA-dependent innate immune response triggered by the Helicobacter pylori type IV secretion system. Cell Reports 20(10), 23842395.CrossRefGoogle ScholarPubMed
Zhou, P, et al. (2018) Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose. Nature 561(7721), 122126.CrossRefGoogle ScholarPubMed
Maubach, G, et al. (2021) TIFA has dual functions in Helicobacter pylori-induced classical and alternative NF-κB pathways. EMBO Reports 22(9), e52878.CrossRefGoogle ScholarPubMed
Gaudet, RG and Gray-Owen, SD (2016) Heptose sounds the alarm: innate sensing of a bacterial sugar stimulates immunity. PLoS Pathogens 12(9), e1005807.CrossRefGoogle ScholarPubMed
Gall, A, et al. (2017) TIFA signaling in gastric epithelial cells initiates the cag type 4 secretion system-dependent innate immune response to Helicobacter pylori infection. MBio 8(4), e01168–17.CrossRefGoogle ScholarPubMed
Stein, SC, et al. (2017) Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. PLoS Pathogens 13(7), e1006514.CrossRefGoogle ScholarPubMed
Patel, S, et al. (2013) Helicobacter pylori downregulates expression of human β-defensin 1 in the gastric mucosa in a type IV secretion-dependent fashion. Cellular Microbiology 15(12), 20802092.CrossRefGoogle Scholar
Bauer, B, et al. (2012) The Helicobacter pylori virulence effector CagA abrogates human β-defensin 3 expression via inactivation of EGFR signaling. Cell Host & Microbe 11(6), 576586.CrossRefGoogle ScholarPubMed
Chmiela, M, et al. (2017) Host pathogen interactions in Helicobacter pylori related gastric cancer. World Journal of Gastroenterology 23(9), 1521.CrossRefGoogle ScholarPubMed
He, H, et al. (2021) Helicobacter pylori CagA interacts with SHP-1 to suppress the immune response by targeting TRAF6 for K63-linked ubiquitination. The Journal of Immunology 206(6), 11611170.CrossRefGoogle ScholarPubMed
Gang Liu, Y, et al. (2019) Abrogation of cathepsin C by Helicobacter pylori impairs neutrophil activation to promote gastric infection. The FASEB Journal 33(4), 50185033.CrossRefGoogle Scholar
Gobert, AP, et al. (2014) Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. The Journal of Immunology 193(6), 30133022.CrossRefGoogle ScholarPubMed
Gray-Owen, SD and Blumberg, RS (2006) CEACAM1: contact-dependent control of immunity. Nature Reviews Immunology 6(6), 433446.CrossRefGoogle ScholarPubMed
Gur, C, et al. (2019) The Helicobacter pylori HopQ outermembrane protein inhibits immune cell activities. Oncoimmunology 8(4), e1553487.CrossRefGoogle ScholarPubMed
Djekic, A and Müller, A (2016) The immunomodulator VacA promotes immune tolerance and persistent Helicobacter pylori infection through its activities on T-cells and antigen-presenting cells. Toxins 8(6), 187.CrossRefGoogle ScholarPubMed
Utsch, C and Haas, R (2016) VacA's induction of VacA-containing vacuoles (VCVs) and their immunomodulatory activities on human T cells. Toxins 8(6), 190.CrossRefGoogle ScholarPubMed
Zheng, PY and Jones, NL (2003) Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cellular Microbiology 5(1), 2540.CrossRefGoogle ScholarPubMed
Amedei, A, et al. (2006) The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. The Journal of Clinical Investigation 116(4), 10921101.CrossRefGoogle ScholarPubMed
Schmalstig, AA, et al. (2018) Noncatalytic antioxidant role for Helicobacter pylori urease. Journal of Bacteriology 200(17), e00124–18.CrossRefGoogle ScholarPubMed
Gerhard, M, et al. (2005) A secreted low-molecular-weight protein from Helicobacter pylori induces cell-cycle arrest of T cells. Gastroenterology 128(5), 13271339.CrossRefGoogle ScholarPubMed
Beigier-Bompadre, M, et al. (2011) Modulation of the CD4+ T-cell response by Helicobacter pylori depends on known virulence factors and bacterial cholesterol and cholesterol α-glucoside content. Journal of Infectious Diseases 204(9), 13391348.CrossRefGoogle ScholarPubMed
Ramarao, N, et al. (2000) Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Molecular Microbiology 37(6), 13891404.CrossRefGoogle ScholarPubMed
Lewis, ND, et al. (2011) Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. The Journal of Immunology 186(6), 36323641.CrossRefGoogle ScholarPubMed
Tan, GMY, et al. (2015) Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264. 7 monocytic macrophage cells. Scientific Reports 5(1), 116.Google ScholarPubMed
Chaturvedi, R, et al. (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. Journal of Biological Chemistry 279(38), 4016140173.CrossRefGoogle ScholarPubMed
Asim, M, et al. (2010) Helicobacter pylori induces ERK-dependent formation of a phospho-c-Fos⋅ c-Jun activator protein-1 complex that causes apoptosis in macrophages. Journal of Biological Chemistry 285(26), 2034320357.CrossRefGoogle ScholarPubMed
Cheok, YY, et al. (2022) Innate immunity crosstalk with Helicobacter pylori: pattern recognition receptors and cellular responses. International Journal of Molecular Sciences 23(14), 7561.CrossRefGoogle ScholarPubMed
Yang, H and Hu, B (2022) Immunological perspective: Helicobacter pylori infection and gastritis. Mediators of Inflammation 2022, 156189.CrossRefGoogle ScholarPubMed
Morey, P, et al. (2018) Helicobacter pylori depletes cholesterol in gastric glands to prevent interferon gamma signaling and escape the inflammatory response. Gastroenterology 154(5), 13911404. e9.CrossRefGoogle ScholarPubMed
Mitchell, P, et al. (2007) Chronic exposure to Helicobacter pylori impairs dendritic cell function and inhibits Th1 development. Infection and Immunity 75(2), 810819.CrossRefGoogle ScholarPubMed
Alexander, SM, et al. (2021) Helicobacter pylori in human stomach: the inconsistencies in clinical outcomes and the probable causes. Frontiers in Microbiology 12, 713955.CrossRefGoogle ScholarPubMed
Arnold, IC, et al. (2011) Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia. Gastroenterology 140(1), 199209. e8.CrossRefGoogle ScholarPubMed
Robinson, K, et al. (2008) Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 57(10), 13751385.CrossRefGoogle ScholarPubMed
Harris, PR, et al. (2008) Helicobacter pylori gastritis in children is associated with a regulatory T-cell response. Gastroenterology 134(2), 491499.CrossRefGoogle ScholarPubMed
Lundgren, A, et al. (2005a) Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori-infected patients. Infection and Immunity 73(1), 523531.CrossRefGoogle ScholarPubMed
Lundgren, A, et al. (2005b) Helicobacter pylori-specific CD4+ T cells home to and accumulate in the human Helicobacter pylori-infected gastric mucosa. Infection and Immunity 73(9), 56125619.CrossRefGoogle ScholarPubMed
Sayi, A, et al. (2011) TLR-2–Activated B cells suppress helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. The Journal of Immunology 186(2), 878890.CrossRefGoogle ScholarPubMed
Hitzler, I, et al. (2011) Dendritic cells prevent rather than promote immunity conferred by a Helicobacter vaccine using a mycobacterial adjuvant. Gastroenterology 141(1), 186196, e1.CrossRefGoogle ScholarPubMed
Sewald, X, et al. (2008) Integrin subunit CD18 Is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. Cell Host & Microbe 3(1), 2029.CrossRefGoogle ScholarPubMed
Sewald, X, Jiménez-Soto, L and Haas, R (2011) PKC-dependent endocytosis of the Helicobacter pylori vacuolating cytotoxin in primary T lymphocytes. Cellular Microbiology 13(3), 482496.CrossRefGoogle ScholarPubMed
Fehri, LF, et al. (2010) Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PLoS ONE 5(3), e9500.CrossRefGoogle Scholar
McBride, A, Konowich, J and Salgame, P (2013) Host defense and recruitment of Foxp3+ T regulatory cells to the lungs in chronic Mycobacterium tuberculosis infection requires toll-like receptor 2. PLoS Pathogens 9(6), e1003397.CrossRefGoogle Scholar
Oertli, M, et al. (2012) DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. The Journal of Clinical Investigation 122(3), 10821096.CrossRefGoogle ScholarPubMed
Laur, AM, et al. (2016) Regulatory T cells may participate in Helicobacter pylori persistence in gastric MALT lymphoma: lessons from an animal model. Oncotarget 7(3), 3394.CrossRefGoogle ScholarPubMed
Tacconelli, E, et al. (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases 18(3), 318327.CrossRefGoogle ScholarPubMed
Megraud, F, et al. (2013) Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 62(1), 3442.CrossRefGoogle ScholarPubMed
Sung, H, et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians 71(3), 209249.Google ScholarPubMed
Yoon, H, et al. (2013) Meta-analysis: Is sequential therapy superior to standard triple therapy for Helicobacter pylori infection in Asian adults? Journal of Gastroenterology and Hepatology 28(12), 18011809.CrossRefGoogle ScholarPubMed
Soudi, H, et al. (2021) Evaluation of Helicobacter pylori OipA protein as a vaccine candidate and propolis as an adjuvant in C57BL/6 mice. Iranian Journal of Basic Medical Sciences 24(9), 1220.Google ScholarPubMed
Holmgren, J, et al. (2018) Preclinical immunogenicity and protective efficacy of an oral Helicobacter pylori inactivated whole cell vaccine and multiple mutant cholera toxin: a novel and non-toxic mucosal adjuvant. Vaccine 36(41), 62236230.CrossRefGoogle ScholarPubMed
Guo, L, et al. (2019) Therapeutic protection against Helicobacter pylori infection in Mongolian gerbils by oral immunization with a tetravalent epitope-based vaccine with polysaccharide adjuvant. Frontiers in Immunology 10, 1185.CrossRefGoogle ScholarPubMed
Cen, Q, et al. (2021) Immune evaluation of a Saccharomyces cerevisiae-based oral vaccine against Helicobacter pylori in mice. Helicobacter 26(1), e12772.CrossRefGoogle ScholarPubMed
Ansari, H, Tahmasebi-Birgani, M and Bijanzadeh, M (2021) DNA vaccine containing Flagellin A gene induces significant immune responses against Helicobacter pylori infection: An in vivo study. Iranian Journal of Basic Medical Sciences 24(6), 796.Google ScholarPubMed
Zhang, Y, et al. (2022) Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 27(6), e12926.CrossRefGoogle ScholarPubMed
Dos Santos Viana, I, et al. (2021) Vaccine development against Helicobacter pylori: From ideal antigens to the current landscape. Expert Review of Vaccines 20(8), 989999.CrossRefGoogle Scholar
Robinson, K, Kaneko, K and Andersen, LP (2017) Helicobacter: Inflammation, immunology and vaccines. Helicobacter 22, e12406.CrossRefGoogle ScholarPubMed
Guo, L, et al. (2013) Immunological features and efficacy of the reconstructed epitope vaccine CtUBE against Helicobacter pylori infection in BALB/c mice model. Applied Microbiology and Biotechnology 97(6), 23672378.CrossRefGoogle ScholarPubMed
Akhiani, AA, et al. (2005) IgA antibodies impair resistance against Helicobacter pylori infection: studies on immune evasion in IL-10-deficient mice. The Journal of Immunology 174(12), 81448153.CrossRefGoogle ScholarPubMed
Sun, H, et al. (2018) Immunodominant antigens that induce Th1 and Th17 responses protect mice against Helicobacter pylori infection. Oncotarget 9(15), 12050.CrossRefGoogle ScholarPubMed
Sutton, P (2015) At last, vaccine-induced protection against Helicobacter pylori. Lancet (London. England 386(10002), 1424.Google Scholar
Mejías-Luque, R and Gerhard, M (2017) Immune evasion strategies and persistence of Helicobacter pylori. In Tegtmeyer, N (ed.), Molecular Pathogenesis and Signal Transduction by Helicobacter pylori. Springer, pp. 5371.CrossRefGoogle ScholarPubMed