Skip to main content Accessibility help
×
Home

Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle

  • Ivan Toral-Ojeda (a1) (a2), Garazi Aldanondo (a1) (a2), Jaione Lasa-Elgarresta (a1), Haizpea Lasa-Fernández (a1) (a3), Roberto Fernández-Torrón (a1) (a2) (a4), Adolfo López de Munain (a1) (a2) (a3) (a4) and Ainara Vallejo-Illarramendi (a1) (a2)...

Abstract

Limb-girdle muscular dystrophy type 2A (LGMD2A) is a form of muscular dystrophy caused by mutations in calpain 3 (CAPN3). Several studies have implicated Ca2+ dysregulation as an underlying event in several muscular dystrophies, including LGMD2A. In this study we used mouse and human myotube cultures, and muscle biopsies in order to determine whether dysfunction of sarco/endoplasmatic Ca2+-ATPase (SERCA) is involved in the pathology of this disease. In CAPN3-deficient myotubes, we found decreased levels of SERCA 1 and 2 proteins, while mRNA levels remained comparable with control myotubes. Also, we found a significant reduction in SERCA function that resulted in impairment of Ca2+ homeostasis, and elevated basal intracellular [Ca2+] in human myotubes. Furthermore, small Ankyrin 1 (sAnk1), a SERCA1-binding protein that is involved in sarcoplasmic reticulum integrity, was also diminished in CAPN3-deficient fibres. Interestingly, SERCA2 protein was patently reduced in muscles from LGMD2A patients, while it was normally expressed in other forms of muscular dystrophy. Thus, analysis of SERCA2 expression may prove useful for diagnostic purposes as a potential indicator of CAPN3 deficiency in muscle biopsies. Altogether, our results indicate that CAPN3 deficiency leads to degradation of SERCA proteins and Ca2+ dysregulation in the skeletal muscle. While further studies are needed in order to elucidate the specific contribution of SERCA towards muscle degeneration in LGMD2A, this study constitutes a reasonable foundation for the development of therapeutic approaches targeting SERCA1, SERCA2 or sAnk1.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Ainara Vallejo-Illarramendi, Instituto de Investigación BioDonostia, PO Doctor Begiristain s/n, 20014 San Sebastián, Spain. E-mail: ainaravallejo@yahoo.es

References

Hide All
1. Richard, I. et al. (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27-40
2. Hauerslev, S. et al. (2012) Calpain 3 is important for muscle regeneration: evidence from patients with limb girdle muscular dystrophies. BMC Musculoskeletal Disorders 13, 43
3. Dayanithi, G. et al. (2009) Alteration of sarcoplasmic reticulum Ca2+ release in skeletal muscle from calpain 3-deficient mice. International Journal of Cell Biology 2009, 340346
4. Kramerova, I. et al. (2008) Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Human Molecular Genetics 17, 3271-3280
5. Vallejo-Illarramendi, A. et al. (2014) Dysregulation of calcium homeostasis in muscular dystrophies. Expert Reviews in Molecular Medicine 16, e16
6. Kramerova, I. et al. (2012) Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3. Human Molecular Genetics 21, 3193-3204
7. Periasamy, M. and Kalyanasundaram, A. (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle & Nerve 35, 430-442
8. Ojima, K. et al. (2011) Non-proteolytic functions of calpain-3 in sarcoplasmic reticulum in skeletal muscles. Journal of Molecular Biology 407, 439-449
9. Fajardo, V.A. et al. (2013) Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS ONE 8, e84304
10. Lamboley, C.R. et al. (2014) Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. Journal of Physiology 592 (Pt 6), 1381-1395
11. Zhu, C.H. et al. (2007) Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6, 515-523
12. Vanderplanck, C. et al. (2011) The FSHD atrophic myotube phenotype is caused by DUX4 expression. PLoS ONE 6, e26820
13. Gehrig, S.M. et al. (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 484, 394-398
14. Neumann, J.T. et al. (2011) CGP-37157 inhibits the sarcoplasmic reticulum Ca(2)+ ATPase and activates ryanodine receptor channels in striated muscle. Molecular Pharmacology 79, 141-147
15. Vallejo-Illarramendi, A. et al. (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiology of Disease 21, 154-164
16. Amack, J.D. and Mahadevan, M.S. (2001) The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12 myoblast differentiation. Human Molecular Genetics 10, 1879-1887
17. Goonasekera, S.A. et al. (2011) Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. The Journal of Clinical Investigation 121, 1044-1052
18. Heizmann, C.W., Berchtold, M.W. and Rowlerson, A.M. (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proceedings of the National Academy of Sciences of the United States of America 79, 7243-7247
19. Lange, S. et al. (2009) Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. Journal of Cell Science 122 (Pt 15), 2640-2650
20. Ackermann, M.A. et al. (2011) Integrity of the network sarcoplasmic reticulum in skeletal muscle requires small ankyrin 1. Journal of Cell Science 124 (Pt 21), 3619-3630
21. Taveau, M. et al. (2003) Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Molecular and Cellular Biology 23, 9127-9135
22. Soderberg, O. et al. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nature Methods 3, 995-1000
23. Tuncbag, N. et al. (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nature Protocols 6, 1341-1354
24. Rajakumar, D., Alexander, M. and Oommen, A. (2013) Oxidative stress, NF-kappaB and the ubiquitin proteasomal pathway in the pathology of calpainopathy. Neurochemical Research 38, 2009-2018
25. Kho, C. et al. (2011) SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601-605
26. Stuelsatz, P. et al. (2010) Down-regulation of MyoD by calpain 3 promotes generation of reserve cells in C2C12 myoblasts. Journal of Biological Chemistry 285, 12670-12683
27. Anderson, L.V. et al. (2000) Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscular Disorders 10, 553-559
28. Haravuori, H. et al. (2001) Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene. Neurology 56, 869-877
29. Renjini, R. et al. (2012) Analysis of calpain-3 protein in muscle biopsies of different muscular dystrophies from India. Indian Journal of Medical Research 135, 878-886
30. Saenz, A. et al. (2005) LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain 128 (Pt 4), 732-742
31. Zsebo, K. et al. (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circulation Research 114, 101-108
32. Shareef, M.A., Anwer, L.A. and Poizat, C. (2014) Cardiac SERCA2A/B: therapeutic targets for heart failure. European Journal of Pharmacology 724, 1-8
33. Bianchini, E. et al. (2014) Inhibition of ubiquitin proteasome system rescues the defective sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1) protein causing Chianina cattle pseudomyotonia. Journal of Biological Chemistry 289, 33073-33082
34. Prasad, V. et al. (2004) Phenotypes of SERCA and PMCA knockout mice. Biochemical and Biophysical Research Communications 322, 1192-1203
35. Ver Heyen, M. et al. (2001) Replacement of the muscle-specific sarcoplasmic reticulum Ca(2+)-ATPase isoform SERCA2a by the nonmuscle SERCA2b homologue causes mild concentric hypertrophy and impairs contraction-relaxation of the heart. Circulation Research 89, 838-846
36. Benders, A.A. et al. (1994) Ca2+ homeostasis in Brody's disease. A study in skeletal muscle and cultured muscle cells and the effects of dantrolene an verapamil. Journal of Clinical Investigation 94, 741-748
37. Odermatt, A. et al. (1996) Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nature Genetics 14, 191-194
38. Voermans, N.C. et al. (2012) Brody syndrome: a clinically heterogeneous entity distinct from Brody disease: a review of literature and a cross-sectional clinical study in 17 patients. Neuromuscular Disorders 22, 944-954
39. Jacobsen, N.J. et al. (1999) ATP2A2 mutations in Darier's disease and their relationship to neuropsychiatric phenotypes. Human Molecular Genetics 8, 1631-1636
40. Penisson-Besnier, I. et al. (1998) Pseudometabolic expression and phenotypic variability of calpain deficiency in two siblings. Muscle & Nerve 21, 1078-1080
41. Zhou, D. et al. (1997) Small, membrane-bound, alternatively spliced forms of ankyrin 1 associated with the sarcoplasmic reticulum of mammalian skeletal muscle. Journal of Cell Biology 136, 621-631
42. Kontrogianni-Konstantopoulos, A. and Bloch, R.J. (2003) The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin. Journal of Biological Chemistry 278, 3985-3991
43. Kontrogianni-Konstantopoulos, A. et al. (2003) Obscurin is a ligand for small ankyrin 1 in skeletal muscle. Molecular Biology of the Cell 14, 1138-1148
44. Ahn, W. et al. (2003) Multiple effects of SERCA2b mutations associated with Darier's disease. The Journal of Biological Chemistry 278, 20795-20801
45. Daiho, T. et al. (1999) Deletions or specific substitutions of a few residues in the NH(2)-terminal region (Ala(3) to Thr(9)) of sarcoplasmic reticulum Ca(2+)-ATPase cause inactivation and rapid degradation of the enzyme expressed in COS-1 cells. Journal of Biological Chemistry 274, 23910-23915
46. Fanin, M., Nascimbeni, A.C. and Angelini, C. (2013) Muscle atrophy in Limb Girdle Muscular Dystrophy 2A: a morphometric and molecular study. Neuropathology and Applied Neurobiology 39, 762-771
Type Description Title
PDF
Supplementary materials

Toral-Ojeda supplementary material
Figures S1-S11 and Table S1

 PDF (14.8 MB)
14.8 MB

Calpain 3 deficiency affects SERCA expression and function in the skeletal muscle

  • Ivan Toral-Ojeda (a1) (a2), Garazi Aldanondo (a1) (a2), Jaione Lasa-Elgarresta (a1), Haizpea Lasa-Fernández (a1) (a3), Roberto Fernández-Torrón (a1) (a2) (a4), Adolfo López de Munain (a1) (a2) (a3) (a4) and Ainara Vallejo-Illarramendi (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed