Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T14:44:48.698Z Has data issue: false hasContentIssue false

Stomatal Characteristics among Cassava Cultivars and their Relation to Gas Exchange

Published online by Cambridge University Press:  03 October 2008

Mabrouk A. El-Sharkawy
Affiliation:
Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia, S. America
James H. Cock
Affiliation:
Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia, S. America
Giovanna de Cadena
Affiliation:
Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia, S. America

Summary

Cassava (Manihot esculenta Crantz) has generally been reported to possess hypostomatal leaves. Several cultivars have now been found to possess clusters of functional stomata around the veins on the upper leaf surface and two cultivars (M Col 88 and M Col 90) have significant numbers of stomata (83–140 mm−2) dispersed over the entire upper leaf surface. Stomatal density on the lower leaf surface ranged from 322–553 mm−2 among cultivars, with a relative stomatal area of 3.4–6.1%. The CO2 uptake by the upper leaf surface (27% of total) and the transpiration loss (32% of total) corresponded closely to the ratio of relative stomatal areas on the upper and lower leaf surface of cv. M Col 88.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

CIAT (1980). Centro International de Agricultura Tropical, Annual Report. Cali, Colombia, S. America.Google Scholar
Connor, D. J. & Palta, J. (1981). Response of cassava to water shortage. III. Stomatal control of plant water studies. Field Crops Research 4:297311.CrossRefGoogle Scholar
Körner, C. H., Scheel, J. A. & Bauer, H. (1979). Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:4582.Google Scholar
Metcalfe, C. R. & Chalk, L. (1950). Anatomy of the Dicotyledons. Vols 1 and 2. London: Oxford University Press.Google Scholar
North, C. (1956). A technique for measuring structural features of plant epidermis using cellulose acetate films. Nature 176:11861187.CrossRefGoogle Scholar
Pereira, J. F. (1977). Fisiologia de la yuca (Manihot esculenta Crantz). Jusepin, Venezuela, Universidad de Oriente. Escuela de Ingeniería Agronómica. pp. 123.Google Scholar
Rocha, Z. M. M. Da (1976). Estudo comparative da tolerancia a desidrataçāo en cacaueiro (Theobroma cacao linn) e plantas de sombreamento. Tese Maestria Ciencias. Itabuna, Brasil. Universidade Federal de Bahía. pp. 26.Google Scholar
Slavik, B. (1971). Determination of stomatal aperture. In Plant Photosynthetic Production: Manual of Methods, 556563 (Eds Sestak, Z., Catsky, J. & Jarvis, P. G.). The Hague: Dr W. Junk N.V. Publishers.Google Scholar
Slavik, B. (1974). Methods of Studying Plant Water Relations. Ecological studies Volume 9. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Williams, C. N. (1971). Growth and productivity of Tapioca (Manihot utilissima). II. Stomatal functioning and yield. Experimental Agriculture 7:4962.CrossRefGoogle Scholar