Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T18:11:43.269Z Has data issue: false hasContentIssue false

METHYL XANTHINE AS A POTENTIAL ALTERNATIVE TO GIBBERELLIC ACID IN ENHANCING FRUIT SET AND QUALITY IN CLEMENTINE CITRUS TREES IN SPAIN

Published online by Cambridge University Press:  07 January 2011

ANA QUIÑONES*
Affiliation:
Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada a Náquera, C.P. 46113, Moncada, Valencia, Spain
BELÉN MARTÍNEZ-ALCÁNTARA
Affiliation:
Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada a Náquera, C.P. 46113, Moncada, Valencia, Spain
SARA SAN-FRANCISCO
Affiliation:
Department of Research and Development, Inabonos–Roullier Group, Polígono Arazuri–Orcoyen, C/C n° 34, 31160 Orcoyen, Spain
JOSÉ MARÍA GARCÍA-MINA
Affiliation:
Department of Research and Development, Inabonos–Roullier Group, Polígono Arazuri–Orcoyen, C/C n° 34, 31160 Orcoyen, Spain
FRANCISCO LEGAZ
Affiliation:
Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada a Náquera, C.P. 46113, Moncada, Valencia, Spain
*
Corresponding author. quinones_ana@ivia.gva.es

Summary

Citrus clementine cv. ‘Nules’ is a seedless mandarin with excellent quality for consumption as fresh fruit; however, its poor fruit set leads to an excess of small-sized fruits. Currently, the only available practice to increase fruit set is the use of the growth regulator gibberellic acid (GA3) as a foliar spray. A trial was conducted to compare an environmentally friendly new bioregulator (MX), containing methyl-xanthine, to GA3 in terms of increasing fruit set and yield of clementine cv. Nules mandarin trees. Fruit yield was significantly increased in treated trees from 17.4 to 25.7% for GA3 and MX treatments, respectively, compared to untreated control trees, without any significant differences between the growth regulators. At the tested doses, MX performed similarly to GA3 in terms of fruit quality and nutrient content, while colour index was not affected significantly by this new bioregulator. A single foliar application of MX was enough to increase fruit set. Spray application of MX on clementine mandarins at the end of the flowering period, when all petals have fallen showed a similar response to GA3 treatments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abad, M. and Monteiro, A. A. (1989). The use of auxins for the production of greenhouse tomatoes in mild-winter conditions: a review. Science Horticulturae 38:167192.CrossRefGoogle Scholar
Aboukhaled, A. A., Alfaro, A. and Smith, M. (1982). Lysimeters. FAO Irrigation and Drainage. Paper 39. FAO (Food and Agriculture Organization of the United Nations), Rome.Google Scholar
Agustí, M., Zaragoza, S., Bleiholder, H., Buhr, L., Hack, H., Klose, K. and Staub, R. (2003). The BBCH scale for describing phenological stages in Citrus. In Proceedings of International Congress of Citriculture. Ninth meeting of the International Society of Citriculture, 4–7 December 2000 FL, Orlando, USA 1: 445446.Google Scholar
Alabadí, D., Agüero, M. S., Pérez-Amador, M. A. and Carbonell, J. (1996). Arginase, arginine decarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries. Changes in pollinated ovaries and parthenocarpic fruits induced by auxin and gibberellin. Plant Physiology 112:12371244.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. and Smith, M. (1998). Crop evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage. Paper 56. FAO (Food and Agriculture Organization of the United Nations), Rome.Google Scholar
Alós, E., Cercós, M., Rodrigo, M. J., Zacarías, L. and Talón, M. (2006). Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. Journal of Agriculture and Food Chemistry 54:48884895.CrossRefGoogle ScholarPubMed
Basiouny, F. M. (1994). Effects of paclobutrazol, gibberellic-acid, and ethephon on yield and quality of muscadine grapes. Phyton-International Journal of Experimental Botany 56:16.Google Scholar
Castel, J. R. and Buj, A. (1994). Growth and evapotranspiration of young, drip irrigated Clementine trees, Proceedings of International Congress of Citriculture. Seventh Meeting of the International Society of Citriculture, 8–13 March 1992 Acireale, Italy 2:651656.Google Scholar
Chao, C. T. and Lovatt, C. J. (2006). Effects of concentration and application time of GA3 and urea on yield, fruit size distribution and crop value of clementine mandarin in California. In Proceedings Xth International Symposium on Plant Bioregulator in Fruit. Acta Horticulturae (ISHS) 727:227237.Google Scholar
Chundawat, B. S. and Randhawa, G. S. (1971). Studies on fruit set and fruit drop in sweet lime (Citrus limettioides TANAKA). Journal of Japanese Society for Horticultural Science 40:1521.CrossRefGoogle Scholar
Dawood, S. A., Meligy, M. S. and El-Hamady, M. M. (2001). How to regulate cropping in Balady mandarin trees (A) using gibberellins. Minufiya Journal Of Agricultural Research 26:869882.Google Scholar
De Jong, M., Mariani, C. and Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany 60:15231532.CrossRefGoogle ScholarPubMed
Del Rivero, J. M., Veyrat, P. and Gómez de Barreda, D. (1969). Improving fruit set in Clementine Mandarin with chemical treatments in Spain. Proceedings of International Congress of Citriculture. First Meeting of the International Society of Citriculture 16–26 March 1968 Riverside, California, USA 3:11211124.Google Scholar
El-Otmani, M., Ben Ismail, M. C., Ait Oubahou, A. and Achouri, M. (1994). Growth regulators use on ‘Clementine’ mandarin to improve fruit set. Proceedings of International Congress of Citriculture. Seventh Meeting of the International Society of Citriculture, 8–13 March 1992 Acireale, Italy. 1:500508.Google Scholar
El-Otmani, M., Coggins, C. H., Agustí, M. and Lovatt, C. (2000). Plant growth regulators in citriculture: World current uses. Critical Review of Plant Sciences 19: 395447.CrossRefGoogle Scholar
El-Otmani, M., Ait-Oubahou, A., El-Hassainate, F., Kaanane, A. and Lovatt, C. J. (2004). Effect of gibberellic acid, urea and KNO3 on yield and on composition and nutritional quality of clementine mandarin fruit juice. Acta Horticulturae (ISHS) 2:149157.CrossRefGoogle Scholar
El-Moneim, E. A. A., El Migeed, M. M. M. and Ismai, O. M. M. (2007). GA3 and zinc sprays for improving yield and fruit quality of Washington Navel orange trees grown under sandy soil conditions. Research Journal of Agriculture and Biological Sciences 3:498503.Google Scholar
García-Martínez, J. L. and García-Papí, M. A. (1979). The influence of gibberellic acid, 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine on fruit-set of Clementine mandarin. Scientia Horticulturae 10:285293.CrossRefGoogle Scholar
García-Mina Freire, J. M. and Cenoz, A. (2004). Growth stimulating composition for plants. European Patent Application, EP 01500090.4.Google Scholar
Keller, J. and Karmelli, D. (1974). Trickle irrigation design parameters. Transactions of the ASAE 17:678684.CrossRefGoogle Scholar
Krezdorn, A. H. (1969). The use of growth regulators to improve fruit set in citrus. Proceedings of International Congress of Citriculture. First Meeting of the International Society of Citriculture 16–26 March 1968 Riverside, California, USA 3:11131119.Google Scholar
Ladaniya, M. (2008). Fruit quality control, evaluation and analysis. In Citrus Fruit: Biology, Technology and Evaluation, 475500. San Diego, CA: Elsevier Academic Press.CrossRefGoogle Scholar
Legaz, F. and Primo-Millo, E. (1988) Guidelines for Citrus Fertilization. Technical Report, Department of the Agriculture, Fish and Food of the Valencian Government, Valencia, Spain, No 5–88 [In Spanish].Google Scholar
MAPA. (2002). Ministry of Agriculture, Fisheries and Food. Agricultural report. Available from: www.mapa.es/alimentacion/pags/Denominacion/frutas/Clementina/Pliego_condiciones.pdf. [Accessed 3 December 2010].Google Scholar
MARM. (2007). Ministry of Environment, Rural and Marine. Agricultural Report.Google Scholar
Martínez, J. M., Bañuls, J., Quiñones, A., Martín, B., Primo-Millo, E. and Legaz, F. (2002). Fate and transformations of 15N labelled nitrogen applied in spring to Citrus trees. Journal of Horticultural Science and Biotechnology 77:361367.Google Scholar
Monselise, S. P. (1986). Citrus. In Handbook of Fruit Set and Development, 87108 (Ed Monselise, S. P.) CRC Press, Boca Raton, Florida, USA.Google Scholar
Moran, R. and Porath, D. (1980). Chlorophyll determination in intact tissue using N, N-dimethylformamide. Plant Physiology 65:478479.CrossRefGoogle ScholarPubMed
Nawaz, M. A., Ahmad, W., Ahmad, S. and Khan, M. M. (2008). Role of growth regulators on preharvest fruit drop, yield and quality in Kinnow Mandarin. Pakistan Journal of Botany 40:19711981.Google Scholar
Nemali, K. S. and Van Iersel, M. W. (2004). Acclimation of wax begonia to light intensity: Changes in photosynthesis respiration and chlorophyll concentration. Journal of the American Society for Horticultural Science 129:745751.CrossRefGoogle Scholar
Pandolfini, T., Rotino, G. L., Camerini, S., Defez, R. and Spena, A. (2002). Optimisation of transgene action at the post- ranscriptional level: high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnology 2:111.CrossRefGoogle Scholar
Papasavvas, A., Triantafyllidis, V., Zervoudakis, G., Kapotis, G., Samaras, Y. and Salahas, G. (2008). Correlation of SPAD-502 meter readings with physiological parameters and leaf nitrate content in Beta vulgaris. Journal of Environmental Protection and Ecology 9:351356.Google Scholar
Saleem, B. A., Malik, A. U., Pervez, M. A., Khan, A. S. and Khan, M. N. (2008). Spring application of growth regulators affects fruit quality of ‘Blood Red’ sweet orange. Pakistan Journal of Botany 40:10131023.Google Scholar
San-Francisco, S., Houdusse, F., Zamarreño, A. M., Garnica, M., Casanova, E. and García-Mina, J. M. (2005). Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Scientia Horticulturae 106:3852.CrossRefGoogle Scholar
Sharma, R. R. and Singh, R. (2009). Gibberellic acid influences the production of malformed and button berries, and fruit yield and quality in strawberry (Fragaria × ananassa Duch.) Scientia Horticulturae 119:430433.CrossRefGoogle Scholar
Sjut, V. and Bangerth, F. (1982/1983). Induced parthenocarpy – a way of changing the levels of endogenous hormones in tomato fruits Lycopersicon esculentum Mill.). 1 Extractable hormones. Plant Growth Regulation 1:243–25.CrossRefGoogle Scholar
Soost, R. K. and Burnett, H. (1961). Effects of gibberellin on yield and fruit characteristics of ‘Clementine’ mandarin. Proceedings of the American Society of Horticultural Science 77:194201.Google Scholar
Stern, R. A. and Ben-Arie, R. (2009). GA(3) inhibits flowering, reduces hand-thinning, and increases fruit size in peach and nectarine. Journal of Horticultural Science and Biotechnology 84: 119124.CrossRefGoogle Scholar
Steyn, W. J., Ungerer, S. F. and Theron, K. I. (2008). Scoring and girdling, but not GA(3), increase yield without decresing return bloom in ‘Triumph’ persimmon. Hortscience 43: 20222026.CrossRefGoogle Scholar
Tumminelli, R., Conti, F., Maltese, U., Pedrotti, C. and Bordonaro, E. (2005). Effects of 2,4-D, 2,4-DP, triclopir and GA(3) on pre-harvest fruit drop and senescence of ‘Tarocco comune’ blood oranges in Sicilian orchards. Acta Horticulturae (ISHS) 682:801805.CrossRefGoogle Scholar
Uematsu, K., Nakajima, M., Yamaguchi, I., Yoneyama, K. and Fukui, Y. (2007). Role of cAMP in gibberellin promotion of seed germination in Orobanche minor Smith. Journal of Plant Growth Regulation 26:245254.CrossRefGoogle Scholar