Skip to main content Accessibility help
×
Home

LEGUME–MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA

  • M. KERMAH (a1), A. C. FRANKE (a2), B. D. K. AHIABOR (a3), S. ADJEI-NSIAH (a4), R. C. ABAIDOO (a4) (a5) and K. E. GILLER (a1)...

Summary

Soil nutrient constraints coupled with erratic rainfall have led to poor crop yields and occasionally to crop failure in sole cropping in the Guinea savanna of West Africa. We explored different maize-grain legume diversification and intensification options that can contribute to mitigating risks of crop failure, increase crop productivity under different soil fertility levels, while improving soil fertility due to biological N2-fixation by the legume. There were four relay patterns with cowpea sown first and maize sown at least 2 weeks after sowing (WAS) cowpea; two relay patterns with maize sown first and cowpea sown at least 3 WAS maize in different spatial arrangements. These were compared with groundnut-maize, soybean–maize, fallow-maize and continuous maize rotations in fields high, medium and poor in fertility at a site each in the southern (SGS) and northern (NGS) Guinea savanna of northern Ghana. Legumes grown in the poorly fertile fields relied more on N2-fixation for growth leading to generally larger net N inputs to the soil. Crop yields declined with decreasing soil fertility and were larger in the SGS than in the NGS due to more favourable rainfall and soil fertility. Spatial arrangements of relay intercrops did not have any significant impact on maize and legume grain yields. Sowing maize first followed by a cowpea relay resulted in 0.18–0.26 t ha−1 reduction in cowpea grain yield relative to cowpea sown from the onset. Relaying maize into cowpea led to a 0.29–0.64 t ha−1 reduction in maize grain yield relative to maize sown from the onset in the SGS. In the NGS, a decline of 0.66 and 0.82 t ha−1 in maize grain yield relative to maize sown from the onset was observed due to less rainfall received by the relay maize. Groundnut and soybean induced 0.38–1.01 t ha−1 more grain yield of a subsequent maize relative to continuous maize, and 1.17–1.71 t ha−1 more yield relative to relay maize across both sites. Accumulated crop yields over both years suggest that sowing maize first followed by cowpea relay is a promising ecological intensification option besides the more common legume–maize rotation in the Guinea savanna, as it was comparable with soybean–maize rotation and more productive than the other treatments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      LEGUME–MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      LEGUME–MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      LEGUME–MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Corresponding author. Email. mike.kermah@gmail.com

References

Hide All
Adjei-Gyapong, T. and Asiamah, R. D. (2002). The Interim Ghana Soil Classification System and its Relation with the World Reference Base for Soil Resources. Quatorzième réunion Du Sous-Comité Ouest Et Centre Africain De Corrélation Des Sols, Abomey, Benin. 9–13 Oct. 2000. World Soil Resources Report No. 98. FAO, Rome, 51–76.
Agyare, W. A., Clottey, V. A., Mercer-Quarshie, H. and Kombiok, J. M. (2006). Maize yields in the long-term rotation and intercropping systems in the Guinea savanna zone of Northern Ghana. Journal of Agronomy 5:232238.
Bationo, A., Lompo, F. and Koala, S. (1998). Research on nutrient flows and balances in West Africa: state-of-the-art. Agriculture, Ecosystems and Environment 71:1935.
de Lima-Primo, H. E., de Nechet, K. L., de Bernardo, H.-V. A., de Oliverira, J. R., Eduardo, S. G. M. and de Giovanni, R. S. (2015). Epidemiological aspects of cowpea bacterial blight. Tropical Plant Pathology 40:4655.
Fairhurst, T. (Ed.) (2012). Handbook for Integrated Soil Fertility Management. Nairobi, Kenya: Africa Soil Health Consortium, CABI Publishing.
Falconnier, G. N., Descheemaeker, K., Van Mourik, T. A. and Giller, K. E. (2016). Unravelling the causes of variability in crop yields and treatment responses for better tailoring of options for sustainable intensification in southern Mali. Field Crops Research 187:113126.
Franke, A. C., Laberge, G., Oyewole, B. D. and Schulz, S. (2008). A comparison between legume technologies and fallow, and their effects on maize and soil traits, in two distinct environments of the West African savannah. Nutrient Cycling in Agroecosystems 82:117135.
Franke, A. C., Schulz, S., Oyewole, B. D. and Bako, S. (2004). Incorporating short-season legumes and green manure crops into maize-based systems in the moist Guinea savanna of West Africa. Experimental Agriculture 40:463479.
Franke, A. C., van den Brand, G. J., Vanlauwe, B. and Giller, K. E. (2018). Sustainable intensification through rotations with grain legumes in sub-Saharan Africa: a review. Agriculture, Ecosystems and Environment 261:172185.
Giller, K. E. (2001). Nitrogen Fixation in Tropical Cropping Systems, 2nd edn. Wallingford: CABI Publishing.
Kermah, M., Franke, A. C., Adjei-Nsiah, S., Ahiabor, B. D. K., Abaidoo, R. C. and Giller, K. E. (2017). Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research 213:3850.
Kermah, M., Franke, A. C., Adjei-Nsiah, S., Ahiabor, B. D. K., Abaidoo, R. C. and Giller, K. E. (2018). N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agriculture, Ecosystems and Environment 261:201210.
Marinus, W. (2014). Cowpea-Maize Relay Cropping: A Method for Sustainable Agricultural Intensification in Northern Ghana? 83. MSc Thesis Plant Production Systems, Wageningen University, the Netherlands.
Ndungu-Magiroi, K. W., Wortmann, C. S., Kibunja, C., Senkoro, C., Mwangi, T. J. K., Wamae, D., Kifuko-Koech, M. and Msakyi, J. (2017). Maize-bean intercrop response to nutrient application relative to maize sole crop response. Nutrient Cycling in Agroecosystems 109:727.
Nelson, D. W. and Sommers, L. W. (1982). Total carbon and organic matter. In Methods of Soil Analyses, part 2, 2nd edn., no. 9, 301312 (Eds Page, A. L., Miller, R. H., and Keeney, D. R.). Madison, WI: Soil Society of America Book.
Nijhof, K. (1987). The Concentrations of Macro-Elements in Economic Products and Residues of (Sub)Tropical Field Crops, 52. Amsterdam-Wageningen: Centre for World Food Studies.
Oikeh, S. O., Chude, V. O., Carsky, R. J., Weber, G. K. and Horst, W. J. (1998). Legume rotation in the moist tropical savanna: managing soil nitrogen dynamics and cereal yields in farmers’ fields. Experimental Agriculture 34:7383.
Olsen, S. R., Cole, C. V., Watanabe, F. S. and Dean, L. A. (1954). Estimation of Available Phosphorus in Soils by the Extraction with Sodium Bicarbonate. USDA Circular No. 939, Washington, D.C.
Peoples, M. B., Brockwell, J., Herridge, D. F., Rochester, I. J., Alves, B. J. R., Urquiaga, S., Boddey, R. M., Dakora, F. D., Bhattarai, S., Maskey, S. L., Sampet, C., Rerkasem, B., Khans, D. F., Hauggaard-Nielsen, H. and Jensen, B. S. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:117.
Rusinamhodzi, L., Corbeels, M., Nyamangara, J. and Giller, K. E. (2012). Maize-grain legume intercropping as an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research 136:1222.
Sanginga, N., Okogun, J., Vanlauwe, B. and Dashiell, K. (2002). The contribution of nitrogen by promiscuous soybeans to maize based cropping in the moist savanna of Nigeria. Plant and Soil 241:223231.
Sauerborn, J., Sprich, H. and Quarshie, M. (2000). Crop rotation to improve agricultural production in sub-Saharan Africa. Journal of Agronomy and Crop Science 184:6772.
Saville, D. J. (2003). Basic statistics and the inconsistency of multiple comparison procedures. Canadian Journal of Experimental Psychology 57:167175.
Tel, D. A. and Hagatey, M. (1984). Methodology in soil chemical analyses. In Soil And Plant Analyses, 119138. Study guide for agricultural laboratory directors and technologists working in tropical regions. Nigeria: IITA.
Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B. and Chalk, P. (2008). Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems. ACIAR monograph series, 136. Canberra, Australia: Australian Centre for International Agricultural Research.
Vanlauwe, B., Coyne, D., Gockowski, J., Hauser, S., Huising, J., Masso, C., Nziguheba, G., Schut, M. and van Asten, P. (2014). Sustainable intensification and the African smallholder farmer. Current Opinion in Environmental Sustainability 8:1522.
Yusuf, A. A., Abaidoo, R. C., Iwuafor, E. N. O., Olufajo, O. O. and Sanginga, N. (2009b). Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna. Agriculture, Ecosystems and Environment 129:325331.
Yusuf, A. A., Iwuafor, E. N. O., Abaidoo, R. C., Olufajo, O. O. and Sanginga, N. (2009a). Grain legume rotation benefits to maize in the northern Guinea savanna of Nigeria: fixed nitrogen versus other rotation effects. Nutrient Cycling in Agroecosystems 84:129139.

LEGUME–MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA

  • M. KERMAH (a1), A. C. FRANKE (a2), B. D. K. AHIABOR (a3), S. ADJEI-NSIAH (a4), R. C. ABAIDOO (a4) (a5) and K. E. GILLER (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed