Skip to main content Accessibility help


  • K. LATIRI (a1), J. P. LHOMME (a2) and D. W. LAWLOR (a3)


In a context of understanding the physiological mechanisms and cultivar traits which could improve durum wheat (Triticum durum) yield in water limited conditions, the paper focuses on the contribution of stored assimilates to grain growth and yield. A conceptual model describing the different fluxes of assimilate during the grain filling period is used together with a dataset from field experiments made in northern Tunisia during two growing seasons and under different conditions of water and nitrogen supply. Three types of behaviour have been encountered in relation to the balance between demand for assimilate and supply. Remobilisation of stored assimilates provides a buffer enabling grain growth to be maintained. Conditions at anthesis play an important role in determining the type of fluxes of assimilates. Grain number also plays a major role in short- or long-term remobilisation and grain number per ear increases short-term remobilisation. In rain-fed conditions, short-term remobilisation allows faster grain growth.


Corresponding author

Corresponding author. Email:


Hide All
Acreche, M. M. and Safer, G. A. (2011). Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research 122:4048.
Aggarwal, P. K., Fisher, R. A. and Liboon, S. P. (1990). Source-sink relations and effects of post anthesis canopy defoliation in wheat at low latitudes. Journal of Agricultural Science 114:9399.
Ahmadi, A., Joudi, M. and Janmohammadi, M. (2009). Late defoliation and wheat yield: little evidence of post-anthesis source limitation. Field Crops Research 113:9093.
Alvaro, F., Royo, C., Garcia del Moral, L. F. and Villegas, D. (2008). Grain filling and dry matter translocation responses to source-sink modifications in a historical series of Durum wheat. Crop Science 48:15231531.
Araus, J. L., Slafer, G. A., Reynolds, M. P. and Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany 89:925940.
Asseng, S. and van Herwaarden, A. F. (2003). Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant and Soil 256:217229.
Bidinger, F., Musgrave, R. B. and Fisher, R. A. (1977). Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature 270:431433.
Biradar, C. M., Thenkabail, P. S., Noojipady, P., Li, Y., Dheeravath, V., Turral, H., Velpuri, M., Gumma, M. K., Gangalakunta, O. R. P., Cai, X. L., Xiao, X., Schulli, M. A., Alankara, R. D., Gunasinghe, S. and Mohideen, S. (2009). A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. International Journal of Applied Earth Observation and Geoinformation 11:114129.
Blum, A. (1998). Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:7783.
Bortoli, L., Gounot, M. and Jacquinet, J. C. (1969). Climatologie et bioclimatologie de la Tunisie Septentrionale. Annales de l'Institut National de la Recherche Agronomique de Tunisie 42:1235.
Chaabouni, Z. (1983). Caractéristiques physiques des sols de la parcelle expérimentale de Oued Souhil, Nabeul. Centre de Recherche du Génie Rural, Tunis.
Ehdaie, B., Alloush, G. A. and Waines, J. G. (2008). Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research 106:3443.
Evans, L. T. (1975). The physiological basis of crop yield. In Crop Physiology, Some Case Histories, 327357 (Ed Evans, L. T.). Great Britain: Cambridge University Press.
Foulkes, M. J., Slafer, G. A., Davies, W. J., Berry, P. M., Sylveste-Bradley, R., Martre, P., Calderini, D. F., Griffiths, S. and Reynolds, M. P. (2011). Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany 62:469486.
Gallagher, J. N., Biscoe, P. V. and Hunter, B. (1975). Barley and its environment. V. Stability of grain weight. Journal of Applied Ecology 12:319336.
Hogan, M. E. and Hendrix, J. E. (1986). Labeling of fructans in winter wheat stems. Plant Physiology 80:10481050.
Jenner, C. F., Ugalde, T. D. and Aspinall, D. (1991). The physiology of starch and protein deposition in the endosperm of wheat. Australian Journal of Plant Physiology 18:211226.
Latiri, K., Lhomme, J. P., Annabi, M. and Setter, T. (2010). Wheat production in Tunisia: progress, inter-annual variability and relation to rainfall. European Journal of Agronomy 33:3342.
Latiri-Souki, K., Nortcliff, S. and Lawlor, D. W. (1998). Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. European Journal of Agronomy 9:2134.
Lawlor, D. W., Day, W., Johnston, A. E., Legg, B. J. and Parkinson, K. J. (1981). Growth of spring barley under drought: crop development, dry matter accumulation and nutrient content. Journal of Agricultural Science 96:167186.
Lawlor, D. W., Kontturi, M. and Young, A. T. (1989). Photosynthesis by flag leaves of wheat in relation to protein, ribulose bi-phosphate carboxylase activity and nitrogen supply. Journal of Experimental Botany 40:4352.
Passioura, J. B. and Angus, J. F (2010). Improving productivity of crops in water-limited environments, In: Sparks, Donald L., Editor(s). Advances in Agronomy 106:3775.
Pollock, C. J. and Cairns, A. J. (1991). Fructan metabolism in grasses and cereals. Annual Review of Plant Physiology and Plant Molecular Biology 42:77101.
Rebetzke, G. J., Chapman, S. C., McIntyre, C. L., Richards, R. A., Condon, A. G., Watt, M. and van Herwaarden, A. F. (2009). Grain yield improvement in water-limited environments. In Wheat Science and Trade, 215–249 (Ed Carver, B. F.). Oxford: Wiley-Blackwell.
Rebetzke, G. J., van Herwaarden, A. F., Jenkins, C., Weiss, M., Lewis, D., Ruuska, S., Tabe, L., Fettell, N. A. and Richards, R. A. (2008). Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Australian Journal of Agricultural Research 59:891905.
Reynolds, M. P., Pietragalla, J., Setter, T. L. and Condon, A. G. (2008). Source and sink traits that impact on wheat yield and biomass in high production environments. In International Symposium on Wheat Yield Potential: Challenges to International Wheat Breeding, 136–147 (Eds Reynolds, M. P., Pietragalla, J. and Braun, H. J.). Mexico: CIMMYT.
Schnyder, H. (1993). The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling -a review. New Phytologist 123:233–145.
Setter, T. L. (1993). Assimilate allocation in response to water deficit stress. In International Crop Science I. Crop Science Society of America, 733739 (Ed Buxton, D. R.). Madison WI: Crop Science Society of America.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review 38:5594.
Triboi, E. and Triboi-Blondel, A. M. (2002). Productivity and grain or seed composition: a new approach to an old problem. European Journal of Agronomy 16:163186.
van Herwaarden, A. F., Farquhar, G. D., Angus, J. F., Richards, R. A. and Howe, G. N. (1998). ‘Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertiliser. I. Biomass, grain yield, and water use. Australian Journal of Agricultural Research 49:10671081.
Wardlaw, I. F. (1970). The early stages of grain development in wheat: response to light and temperature in a single variety. Australian Journal of Biological Sciences 23 (4):765774.
Willenbrink, J., Bonnett, G. D., Willenbrink, S. and Wardlaw, I. F. (1988). Changes of enzyme activities associated with the mobilization of carbohydrate reserves (fructans) from the stem of wheat during kernel filling. New Phytologist 139:471478.
Yang, J. Z., Zhang, J., Huang, Z., Zhu, Q. and Wang, L. (2000). Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Science 40:16451655.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed