Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T19:23:36.387Z Has data issue: false hasContentIssue false

Viral Quasispecies and Lethal Mutagenesis

Published online by Cambridge University Press:  09 February 2016

Esteban Domingo
Affiliation:
Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain. Email: edomingo@cbm.csic.es; cperales@cbm.csic.es; and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
Celia Perales
Affiliation:
Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d’Hebron Institut de Recerca-Hospital Universitari Vall d´Hebron, (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain. Email: celia.perales@vhir.org

Abstract

Virology has undergone a profound transformation with the incorporation of quasispecies theory to the understanding of the composition and dynamics of viral populations as they cause disease. RNA viral populations do not consist of a genome class with a defined nucleotide sequence but of a cloud or swarm or related mutants due to high mutation rates (number of incorrect nucleotides introduced per nucleotide copied) during replication. DNA and RNA viruses whose multiplication is catalysed by a low fidelity polymerase replicate close to an error threshold for maintenance of their genetic information. This means that modest increases in mutation rate jeopardize their genetic stability. Realization of this important corollary of quasispecies theory has opened new approaches to combating viral disease. One of these approaches is lethal mutagenesis that consists of forcing virus extinction by an excess of mutations evoked by virus-specific mutagenic agents. This article summarizes the origin and current status of this new antiviral approach.

Type
Erasmus Lecture 2014
Copyright
© Academia Europaea 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Eigen, M. (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58, pp. 465523.Google Scholar
2.Eigen, M. and Schuster, P. (1979) The Hypercycle. A Principle of Natural Self-organization (Berlin: Springer).CrossRefGoogle Scholar
3.Domingo, E. and Schuster, P. (2016) Quasispecies: from theory to experimental systems. Current Topics in Microbiology and Immunology, in press.CrossRefGoogle Scholar
4.Flavell, R. A., Sabo, D. L., Bandle, E. F. and Weissmann, C. (1974) Site-directed mutagenesis: generation of an extracistronic mutation in bacteriophage Q beta RNA. Journal of Molecular Biology, 89, pp. 255272.CrossRefGoogle ScholarPubMed
5.Weissmann, C., Taniguchi, T., Domingo, E., Sabo, D. and Flavell, R. A. (1977) Site-directed mutagenesis as a tool in genetics. In: J. Schultz and Z. Brada (eds), Genetic Manipulation as it Affects the Cancer Problem (New York: Academic Press), pp. 1136.Google Scholar
6.Domingo, E., Flavell, R. A. and Weissmann, C. (1976) In vitro site-directed mutagenesis: generation and properties of an infectious extracistronic mutant of bacteriophage Qbeta. Gene, 1, pp. 325.CrossRefGoogle ScholarPubMed
7.Batschelet, E., Domingo, E. and Weissmann, C. (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene, 1, pp. 2732.CrossRefGoogle Scholar
8.Domingo, E., Sabo, D., Taniguchi, T. and Weissmann, C. (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell, 13, pp. 735744.CrossRefGoogle ScholarPubMed
9.Schuster, P. (2016) Quasispecies on fitness landscapes. Current Topics in Microbiology and Immunology, in press.CrossRefGoogle Scholar
10.Holland, J. J., Domingo, E., de la Torre, J. C. and Steinhauer, D. A. (1990) Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. Journal of Virology, 64, 39603962.CrossRefGoogle ScholarPubMed
11.Lee, C. H., Gilbertson, D. L., Novella, I. S., Huerta, R., Domingo, E. and Holland, J. J. (1997) Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. Journal of Virology, 71, 36363640.CrossRefGoogle ScholarPubMed
12.Loeb, L. A., Essigmann, J. M., Kazazi, F., Zhang, J., Rose, K. D. and Mullins, J. I. (1999) Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proceedings of the National Academy of Science USA, 96, pp. 14921497.CrossRefGoogle ScholarPubMed
13.Domingo, E. (2016) Virus as Populations (Amsterdam, the Netherlands: Elsevier).Google Scholar
14.Perales, C. and Domingo, E. (2016) Antiviral strategies based on lethal mutagenesis and error threshold. Current Topics in Microbiology and Immunology, in press.CrossRefGoogle Scholar
15.Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R. and Cameron, C. E. (2000) The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Medicine, 6, pp. 13751379.CrossRefGoogle ScholarPubMed
16.Crotty, S., Cameron, C. E. and Andino, R. (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proceedings of the National Academy of Science USA, 98, pp. 68956900.CrossRefGoogle ScholarPubMed
17.Mullins, J. I., Heath, L., Hughes, J. P., Kicha, J., Styrchak, S., Wong, K. G., Rao, U., Hansen, A., Harris, K. S., Laurent, J. P., Li, D., Simpson, J. H., Essigmann, J. M., Loeb, L. A. and Parkins, J. (2011) Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. PLoS One, 6, e15135.CrossRefGoogle Scholar
18.Grande-Pérez, A., Lázaro, E., Lowenstein, P., Domingo, E. and Manrubia, S. C. (2005) Suppression of viral infectivity through lethal defection. Proceedings of the National Academy of Science USA, 102, pp. 44484452.CrossRefGoogle ScholarPubMed
19.Arias, A., Isabel de Avila, A., Sanz-Ramos, M., Agudo, R., Escarmis, C. and Domingo, E. (2013) Molecular dissection of a viral quasispecies under mutagenic treatment: positive correlation between fitness loss and mutational load. Journal of General Virology, 94, pp. 817830.CrossRefGoogle ScholarPubMed
20.Domingo, E., Sheldon, J. and Perales, C. (2012) Viral quasispecies evolution. Microbiology and Molecular Biology Reviews, 76, pp. 159216.CrossRefGoogle ScholarPubMed
21.Domingo, E. (1989) RNA virus evolution and the control of viral disease. Progress in Drug Research, 33, pp. 93133.CrossRefGoogle ScholarPubMed
22.Domingo, E. and Holland, J. J. (1992) Complications of RNA heterogeneity for the engineering of virus vaccines and antiviral agents. Genetic Engineering (NY), 14, pp. 1331.CrossRefGoogle ScholarPubMed
23.Pariente, N., Sierra, S., Lowenstein, P. R. and Domingo, E. (2001) Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. Journal of Virology, 75, pp. 97239730.CrossRefGoogle ScholarPubMed
24.Tapia, N., Fernandez, G., Parera, M., Gomez-Mariano, G., Clotet, B., Quinones-Mateu, M., Domingo, E. and Martinez, M. A. (2005) Combination of a mutagenic agent with a reverse transcriptase inhibitor results in systematic inhibition of HIV-1 infection. Virology, 338, pp. 18.CrossRefGoogle ScholarPubMed
25.Perales, C., Agudo, R., Tejero, H., Manrubia, S. C. and Domingo, E. (2009) Potential benefits of sequential inhibitor-mutagen treatments of RNA virus infections. PLoS Pathogens, 5, e1000658.CrossRefGoogle ScholarPubMed
26.Moreno, H., Grande-Pérez, A., Domingo, E. and Martín, V. (2012) Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses, 4, pp. 27862805.CrossRefGoogle ScholarPubMed
27.Perales, C., Mateo, R., Mateu, M. G. and Domingo, E. (2007) Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. Journal of Molecular Biology, 369, pp. 9851000.CrossRefGoogle ScholarPubMed