Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T15:57:46.521Z Has data issue: false hasContentIssue false

The pharmacology of long-term memory

Published online by Cambridge University Press:  13 July 2009

Abstract

If information enters memory under the influence of a memory-enhancing substance, for about 16 hours thereafter the recollection of that information is no better than if it had been acquired without any treatment. Later tests of retention, however, performed one or more days, or even weeks, after the experience, show a drug-induced improvement of memory. Memory-enhancing compounds thus appear to facilitate the formation of the long-term memory trace. On the assumption that differences between treated and untreated animals emerge from that moment on when memory is based on the products of the processes modulated by the drugs, it can be postulated that long-term memory comes into play after about 16–20 hours.

Type
Research Article
Copyright
Copyright © Academia Europaea 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Plato (1892) The Dialogues of Plato, Clarendon Press, Oxford.Google Scholar
2.Flood, J. F. and Cherkin, A. (1988) Effect of accute arecoline, tacrine and arecoline + tacrine post-training administration on retention in old mice. Neurobiol. of Aging 9, 58.CrossRefGoogle Scholar
3.Stratton, L. O. and Petrinovich, L. F. (1963) Post-trial injections of an anticholinesterase drug and maze learning in two strains of rats. Psychopharmacologia 5, 4754.CrossRefGoogle ScholarPubMed
4.Mondadori, C., Jaekel, J. and Preiswerk, G. (1993) CGP 36742: The first orally active GABAB blocker improves the cognitive performance of mice, rats and rhesus monkeys. Behavioral and Neural Biology 60, 6268.CrossRefGoogle ScholarPubMed
5.Deyo, R. A., Straube, K. and Disterhoft, J. F. (1989) Nimodipine facilitates associative learning in aging rabbits. Science 248, 809811.CrossRefGoogle Scholar
6.Mondadori, C. and Etienne, P. (1990) Nootropic effects of ACE-inhibitors in mice. Psychopharmacology 100, 301307.CrossRefGoogle ScholarPubMed
7.de Wied, D. and Bohus, B. (1979) Modulation of memory processes by neuropeptides of hypophyseal origin. In Brazier, M. A. B. (Ed) Brain Mechanisms in Memory and Learning: From the Single Neuron to Man. Raven Press, New York, 139149.Google Scholar
8.de Wiefdied, D. (1974) Pituitary-adrenal system hormones and behaviour. In Schmitt, F. O. and Worden, F. G. (Eds) The Neurosciences: Third Study Programme. MIT Press, Cambridge, 653666.Google Scholar
9.Gold, P. E. and van Buskirk, R. B. (1975) Facilitation of time-dependent memory processes with posttrial epinephrine injections. Behav. Biol. 13, 145153.CrossRefGoogle ScholarPubMed
10.Giurgea, C. E. and Mouravieff-Lesuisse, F. (1972) Effet facilitateur du piracetam sur un apprentissage répétitif chez le rat. J. Pharmacol. 3, 1730.Google Scholar
11.Mondadori, C., Classen, W., Borkowski, J., Ducret, T., Bürki, H. and Schadé, A. (1986) Effects of oxiracetam on learning and memory in animals: Comparison with piracetam. Clin. Neuropharmacol. 9 (Suppl. 3), 2738.CrossRefGoogle ScholarPubMed
12.Murray, C. L. and Fibiger, H. C. (1986) The effect of pamiracetam (CI-879) on the acquisition of a radial arm maze task. Psychopharmacology 89, 378381.CrossRefGoogle ScholarPubMed
13.Martin, P. R., Cumin, R., Aschwanden, W., Moreau, J. L., Jenck, F. and Haefely, W. E. (1992) Aniracetam improves radial maze performance in rats. Neuro Report 3, 8183.Google ScholarPubMed
14.Mondadori, C. (1993) The pharmacology of the nootropics; new insights and new questions. Behav. Brain Res. 59, 19.CrossRefGoogle ScholarPubMed
15.Mondadori, C. and Petschke, F. (1987). Do piracetamlike compounds act centrally via peripheral mechanisms? Brain Res. 435, 310314.CrossRefGoogle ScholarPubMed
16.Flood, J. F., Smith, G. E. and Roberts, E. (1988) Dehydroepiandrosterone and its sulfate enhance memory retention in mice. Brain Res. 447, 269287.CrossRefGoogle ScholarPubMed
17.Micheau, J., Destrade, C. and Soumireu-Mourat, B. (1981) Intraventricular corticosterone injection facilitates memory of an appetitive discriminative task in mice. Behav. Neural Biol. 31, 100.CrossRefGoogle ScholarPubMed
18.Micheau, J., Destrade, C. and Soumireu-Mourat, B. (1984) Posttrial injections of corticosterone in dorsal hippocampus of BALB/c mouse facilitate extinction of appetitive operant conditioning in the Skinner box. C. R. Acad. Sci. 294 (Série III) 1109.Google Scholar
19.Brown, R. and Kulik, J. (1977) Flashbulb memories. Cognition 5, 7399.CrossRefGoogle Scholar
20.Mondadori, C., Ducret, T. and Petschke, F. (1984) Blockade of the nootropic action of piracetam-like nootropics by adrenalectomy: an effect of dosage? Behav. Brain Res. 34, 155158.CrossRefGoogle Scholar
21.Santen, R. J., Samojlik, E. and Worgul, T. J. III (1981) Aminoglutethimide. Product profile. In Santen, R. J. and Henderson, I. C. (Eds) Pharmanual 2. A Comprehensive Guide to the Therapeutic Use of Aminoglutethimide. Karger, Basel, 101160.Google Scholar
22.Mondadori, C., Bhatnagar, A., Borkowski, J. and Häusler, A., (1990) Involvement of a steroidal component in the mechanism of action of piracetam-like nootropics. Brain Res: 506, 101108.CrossRefGoogle ScholarPubMed
23.de Gasparo, M.Joss, U., Ramjoue, H. P., Whitebread, S. E., Haenni, H., Schenkel, L., Biollaz, M., Grob, J., Wieland, P. and Wehrli, H. U. (1987) Three new epoxy-spironolactone derivatives: characterization in vivo and in vitro. J. Pharmacol. Exp. Ther. 240, 650656.Google ScholarPubMed
24.Mondadori, C. and Häusler, A. (1990) Aldosterone receptors are involved in the mediation of the memory-enhancing effects of piracetam. Brain Res. 524, 203207.CrossRefGoogle ScholarPubMed
25.Mondadori, C., Ducret, T. and Häusler, A. (1992) Elevated corticosteroid levels block the memory-improving effects of nootropics and cholinomimetics. Psychopharmacology 108, 1115.CrossRefGoogle ScholarPubMed
26.Mondadori, C., Gentsch, C., Hengerer, B., Ducret, T., Borkowski, J., Racine, A., Lederer, R. and Häusler, A. (1992) Pretreatment with aldosterone or corticosterone blocks the memory-enhancing effects of nimodipine, captopril, CGP 37849, and strychnine in mice. Psychopharmacology 109, 383389.CrossRefGoogle ScholarPubMed
27.Mondadori, C. and Weiskrantz, L. (1993) NMDA receptor blockers facilitate and impair learning via different mechanisms. Behavioral and Neural Biology 60, 205210.CrossRefGoogle ScholarPubMed
28.McGaugh, J. L. and Dawson, R. G. (1971). Modification of memory storage processes. Behav. Sci 16, 4563.CrossRefGoogle Scholar
29.McGaugh, J. L. and Herz, M. J. (1977). Memory Consolidation. Albion Press, San Francisco.Google Scholar
30.Schütz, G. (1988) Control of gene expression by steroid hormones. Biol. Chem. 369, 7786.Google ScholarPubMed
31.Yamamoto, K. R. (1985) Steroid receptor regulated transcription of specific genes and gene networks. Ann. Rev. Genet. 19, 209252.CrossRefGoogle ScholarPubMed
32.Katz, J. J. and Halstead, W. C. (1950) Protein organization and mental function. Comparative Psychology Monographs 20, 138.Google Scholar
33.Davies, H. P. and Squire, L. R. (1984) Protein synthesis and memory: a review. Psychol. Bull. 96, 518559.CrossRefGoogle Scholar
34.Flexner, J. B., Flexner, L. B. and Stellar, E. (1963) Memory in mice as affected by intracerebral puromycin. Science 141, 5759.CrossRefGoogle ScholarPubMed
35.Flexner, L. B., Flexner, J. B. and Roberts, R. B. (1967) Memory in mice analyzed with antibiotics. Science 155, 13771382.CrossRefGoogle ScholarPubMed
36.Cole, A. J, Saffen, D. W., Baraban, J. M. and Worley, P. F. (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474476.CrossRefGoogle ScholarPubMed
37.Dragunow, M. and Robertson, H. A. (1987) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329, 441442.CrossRefGoogle ScholarPubMed
38.Dragunow, M. and Robertson, H. A. (1988) Brain injury induces c-fos protein(s) in nerve and glial-like cells in adult mammalian brain. Brain Res 455, 295299.CrossRefGoogle ScholarPubMed
39.Hengerer, B., Lindholm, D., Heumann, R., Rüther, U., Wagner, E. F. and Thoenen, H. (1990) Lesion-induced increase in nerve growth factor mRNA is mediated by c-fos. Proc. Natl. Acad. Sci. USA 87, 38993903.CrossRefGoogle ScholarPubMed
40.Mondadori, C., Hengerer, B., Ducret, T. and Borkowski, J. (1994) Delayed emergence of effects of memory-enhancing drugs: implications for the dynamics of long-term memory. Proc. Natl. Acad. Sci. 91, 20412045.CrossRefGoogle ScholarPubMed
41.Karni, A. and Sagi, D. (1993) The time course of learning a visual skill. Nature 365, 250252.CrossRefGoogle ScholarPubMed
42.Chouinard, G., Annable, L., Ross-Chouinard, A., Olivier, M. and Fontaine, F. (1983) Piracetam in elderly psychiatric patients with mild diffuse cerebral impairment. Psychopharmacology 81, 100106.CrossRefGoogle ScholarPubMed
43.Chouinard, G., Annable, L. and Ross-Chouinard, A. (1981) A double-blind placebo-controlled study of piracetam in elderly psychiatric patients. Psychopharmacol. Bull. 17, 129.Google ScholarPubMed
44.Mangoni, A., Perin, C., Smirne, S., Piccolo, I., DeFilippi, F., Marchetti, C., Motta, A. and Monza, G. C. (1988) A double-blind placebo-controlled study with oxiracetam in demented patients administered the Luria–Nebraska neuropsychological battery. Drug Dev. Res. 14, 217222.CrossRefGoogle Scholar
45.Martignoni, E., Petraglia, F., Costa, A., Bono, G., Genazzini, A. R. and Nappi, G. (1990) Dementia of the Alzheimer type and hypothalamus pituitary-adreno-cortical axis: changes in cerebrospinal fluid corticotropin releasing factor and plasma cortisol levels. Acta Neurol. Scand. 81, 452456.CrossRefGoogle Scholar
46.Dager, S. R., Loebel, J. P., Claypool, K., Case, M., Budech, C. B. and Dunner, D. L. (1992) Oxiracetam in the treatment of primary dementia of the alzheimer's type: a small case series. Int. J. Geriatric Psychiatry 7, 905912.CrossRefGoogle Scholar
47.Fitten, L. J., Perryman, K. M., Gross, P. L., Fine, H., Cummins, J. and Marshall, C. (1990) Treatment of Alzheimer's disease with short- and long-term oral THA and lecithin: a double blind study. Am. J. Psychiatry 147, 239242.Google Scholar
48.Schnabel, J. (1993) New Alzheimer's therapy suggested. A small trial hints that an anti-inflammatory drug shows Alzheimer's disease, thereby supporting the idea that inflammation contributes to the pathology, Science 260, 17191720.CrossRefGoogle Scholar