Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-2bkkj Total loading time: 0.621 Render date: 2022-09-25T14:56:47.052Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Factores neurotróficos y fisiopatología de las psicosis Esquizofrénicas

Published online by Cambridge University Press:  12 May 2020

Nuria Durany
Affiliation:
Facultad de Ciencias de la Salud, Universidad Internacional de Cataluña, c/ Josep Trueta s/n, 08195 San Cugat del Valles (Barcelona), España
Johannes Thome
Affiliation:
Instituto Central de Salud Mental (ZI) Mannheim, Universidad de Heidelberg, Alemania
Get access

Resumen

El propósito de esta revisión es resumir el estado actual de los hallazgos sobre la alteración de las concentraciones de factor neurótrofico en las psicosis esquizofrónicas, sobre las variaciones en los genes que codifican para los factores neurotróficos y sobre el efecto de los medicamentos antipsicóticos en el nivel de expresión de los factores neurotróficos. Es un artículo conceptual que intenta establecer el vínculo entre la teoría del mal desarrollo neural de la esquizofrenia y los factores neurotróficos. Se ha realizado una extensa revisión de las publicaciones utilizando la base de datos Pub Med, un servicio de la National Library o f Medicine, que incluye más de 14 millones de citas para articulos biomédicos, retrocediendo hasta la década de 1950. La mayoría de los estudios analizados en esta revisión apoya la noción de alteraciones de los factores neurotróficos en el nivel de las proteínas y los genes, y la hipótesis de que estas alteraciones podrían explicar, al menos parcialmente, algunas de las anomalías morfológicas, citoarquitectócnicas y neurobioquímicas halladas en el cerebro de los pacientes esquizofrénicos. Sin embargo, los resultados no son siempre concluyentes y la significación clínica de estas alteraciones no se comprende del todo. Así pues, es importante favorecer la investigación del factor neurotrofico para comprender mejor la etiopatogenia de las psicosis esquizofrénicas y, de este modo, poder desarrollar nuevas estrategias de tratamiento muy necesarias para los pacientes que sufren de estos trastornos devastadores.

Type
Revisión
Copyright
Copyright © European Psychiatric Association 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

DuranyN, ThomeJ. Factores neurotróficos y fisiopatología de las psicosis Esquizofrénicas. Eur Psychiatry2004;19:326337.

References

Bibliografía

Agerman, K, Ernfors, P. Differential influence of BDNF and NT-3 on the expression of calcium binding proteins and neuropeptide Y in vivo. Neuroreport 2003; 14: 2183-7.CrossRefGoogle Scholar
Akbarian, S, Bunney, WE, Potkin, SG, Wigal, SB, Hagman, JO, Sandman, CA, et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993; 50: 169-77.CrossRefGoogle ScholarPubMed
Alderson, RF, Alterman, AL, Barde, YA, Lindsay, RM. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 1990; 5: 297306.CrossRefGoogle ScholarPubMed
Aloe, L, Iannitelli, A, Angelucci, F, Bersani, G, Fiore, M. Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav Pharmacol 2000; 11: 235-42.CrossRefGoogle ScholarPubMed
Altar, CA, Criden, MR, Lindsay, RM, DiStefano, PS. Characterization and topography of high affinity 125I-neurotrophin-3 binding to mammalian brain. J Neurosci 1993; 13: 733-43.CrossRefGoogle ScholarPubMed
Altar, CA, Cal, N, Bliven, T, Juhasz, M, Conner, JM, Acheson, AL, et al. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997; 389: 856-60.CrossRefGoogle Scholar
Andersson, H, Lindqvist, E, Olson, L. Down regulation of brain-derived neurotrophic factor mRNA in adult rat brain after acute administration of methylmercury. Mol Chem Neuropathol 1997; 31: 225-33.CrossRefGoogle ScholarPubMed
Angelucci, F, Mathe, AA, Aloe, L. Brain-derived neurotrophic factor and tyrosine kinase receptor trkB in rat brain are sign-ficantly altered after haloperidol and risperidone administration. J Neurosci Res 2000; 60: 783-94.3.0.CO;2-M>CrossRefGoogle Scholar
Apfel, SC. Neurotrophic factors in peripheral neuropathies: therapeutic implications. Brain Pathol 1999; 9: 393413.CrossRefGoogle ScholarPubMed
Arinami, T, Torn, M. No evidence for association between CNTF nuil mutant and schizophrenia. Br J Psychiatry 1996; 169: 253.CrossRefGoogle Scholar
Arinami, T, Takekoshi, K, Itokawa, M, Hamaguchi, H, Torn, M. Failure to find association of the CA repeat polymorphism in the first intron and the Gly-63/Glu-63 polymorphism of the neurotrophin-3 gene with schizophrenia. Psychiatr Genet 1996; 6: 13-5.CrossRefGoogle Scholar
Arnold, SE, Hyman, BT, van Hoesen, GW, Damasio, AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 1991; 48: 625-32.CrossRefGoogle Scholar
Arnold, SE, Franz, BR, Gur, RC, Gur, RE, Shapiro, RM, Moberg, PJ, et al. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry 1995; 152: 738-48.Google ScholarPubMed
Ashe, PC, Berry, MD, Boulton, AA. Schizophrenia, a neurodegenerative disorder with neurodevelopmental antecedents. Prog Neuro Psychopharmacol Biol Psychiatry 2001; 25: 691707.CrossRefGoogle ScholarPubMed
Barbacid, M. Neurotrophic factors and their receptors. Curr Opin Cell Biol 1995; 7: 148-55.CrossRefGoogle ScholarPubMed
Barde, YA. Trophic factors and neuronal survival. Neuron 1989; 2: 1525-34.CrossRefGoogle ScholarPubMed
Barres, BA, Burne, JF, Holtmann, B, Thoenen, H, Sendtner, M, Raff, MC. Ciliary neurotrophic factor enhances the rate of oligodendrocyte generation. Mol Cell Neurosci 1996; 8: 146-56.Google ScholarPubMed
Bartrup, JT, Moorman, JM, Newberry, NR. BDNF enhances neuronal growth and synaptic activity in hippocampal cell cultures. Neuroreport 1997; 8: 3791-4.CrossRefGoogle ScholarPubMed
Benes, FM, Sorensen, I, Bird, DE. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991; 17: 597608.CrossRefGoogle ScholarPubMed
Bernstein, HG, Krell, D, Baumann, B, Danos, P, Falkai, P, Diekmann, S, et al. Morphometric studies of the entorhinal cortex in neuropsychiatric patients and Controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 1998; 33: 125-32.CrossRefGoogle Scholar
Birling, MC, Price, J. Influence of growth factors on neuronal differen-tiation. Curr Opin Cell Biol 1995; 7: 878-84.CrossRefGoogle Scholar
Bogerts, B, Lieberman, JA, Ashtari, M, Bilder, RM, Degreef, G, Lerner, G, et al. Hippocampus-amygdale volumes and psychopathology in chronic schizophrenia. Biol Psychiatry 1993; 33: 236 46.CrossRefGoogle ScholarPubMed
Boris-Moller, F, Kamme, F, Wieloch, T. The effect of hypothermia on the expression of neurotrophin mRNA in the hippocampus following transient cerebral ischemia. Mol Brain Res 1998; 63: 163-73.CrossRefGoogle ScholarPubMed
Bourque, MJ, Trudeau, LE. GDNF enhances the synaptic etficacy of dopaminergic neurons in culture. Eur J Neurosci 2000; 12:3 1 7280.CrossRefGoogle ScholarPubMed
Buchanan, RW, Vladar, K, Barta, PE, Pearlson, GD. Structural evaluation of the prefrontal cortex in schizophrenia. Am J Psychiatry 1998; 155: 1049-55.CrossRefGoogle Scholar
Caldwell, MA, He, X, Wilkie, N, Pollack, S, Marshall, G, Wafford, KA, et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 2001; 19: 475-9.CrossRefGoogle ScholarPubMed
Cassacia-Bonnefil, P, Gu, C, Chao, MV. Neurotrophins in cell survival/death decisions. Adv Exp Med Biol 1999; 468: 275-82.CrossRefGoogle Scholar
Castren, E, da Penha Berzaghi, M, Lindholm, D, Thoenen, H. Differential effects of MK-801 on brain-derived neurotrophic factor mRNA levels in different regions of the rut brain. Exp Neurol 1993; 122: 244-52.CrossRefGoogle Scholar
Chao, MV. Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat Rev Neurosci 2003; 4: 299309.CrossRefGoogle Scholar
Chao, MV, Hempstead, BL. p75 and trk: a two-receptor system. Trends Neurosci 1995; 18: 321-6.CrossRefGoogle ScholarPubMed
Chen, B, Dowlatshahi, D, MacQueen, GM, Wang, JF, Young, LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260-5.CrossRefGoogle ScholarPubMed
Cheng, B, Mattson MR NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 1994; 640: 5667.Google Scholar
Clary, DO, Reichardt, LEAn alternatively spliced form of the nerve growth factor receptor trkA confers an enhanced response to neurotrophin-3. Proc Natl Acad Sci USA 1994; 91: 11133–7.Google Scholar
Cohen, BM, Wan, W. The thalamus as a site of action of antipsychotic drugs. Am J Psychiatry 1996; 153: 104-6.Google ScholarPubMed
Conover, JC, Erickson, JT, Katz, DM, Bianchi, LM, Poueymirou, WT, McClain, J, et al. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT-4. Nature 1995; 375: 235-41.CrossRefGoogle Scholar
Corey-Bloom, J, Jernigan, T, Archibald, S, Harris, MJ, Jeste, DV. Quantitative magnetic resonance imaging of the brain in late-life schizophrenia. Am J Psychiatry 1995; 152: 447-9.Google ScholarPubMed
Dawson, E, Powell, JF, Shan, PC, Nothen, M, Crocq, MA, Propping, P, et al. An association study of a neurotrophin-3 (NT-3) gene polymorphism with schizophrenia. Acta Psychiatr Scand 1995; 92: 425-8.Google ScholarPubMed
Dechant, G, Rodriguez-Tebar, A, Barde, YA. Neurotrophin receptors. Prog Neurobiol 1994; 42: 347-52.CrossRefGoogle ScholarPubMed
Decker, KP, Roy-Byrne, PP, Merchant, KM. Effect of muscimol on haloperidol-induced alteration of neurotensin gene expression in the striatum and nucleus accumbens in rat. Brain Res 1995; 691: 917.CrossRefGoogle Scholar
Durany, N, Michel, T, Zochling, R, Boissl, KW, Cruz-Sanchez, FF, Riederer, P, et al. Brain-denved neurotrophic factor and neurotrophin-3 in schizophrenic psychoses. Schizophr Res 2001; 52: 7986.CrossRefGoogle ScholarPubMed
Franzek, E, Beckmann, H. A study of genetic heterogeneity in schizo-phrenia. Int Psychiatry Today 1995; 4: 912.Google Scholar
Friedman, WJ, Ernfors, P, Persson, H. Transient and persistent expression of NT-3/BDNF mRNA in the rat brain during post-natal development. J Neurosci 1991; 11: 1577-84.CrossRefGoogle Scholar
Gelernter, J, van Dyck, C, van Kammen, DP, Malison, R, Price, LH, Cubells, JF, et al. Ciliary neurotrophic factor null allele frequencies in schizophrenia, affective disorders, and Alzheimerts disease. Am J Med Genet 1997; 74: 497500.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Gili, M, Hawi, Z, O'Neill, FA, Walsh, D, Straub, RE, Kendler, KS. Neurotrophin-3 gene polymorphism and schizophrenia: no evidence for linkage or association. Psychiatr Genet 1996; 0: 183-6.CrossRefGoogle Scholar
Gilmore, JH, Jarskog, LF, Lindgren, JC, McEvoy, JP, Xiao, H. Neurotrophin-3 levels in the cerebrospinal fluid of patients with schizophrenia or medical illness. Psychiatry Res 1997; 73: 109-13.CrossRefGoogle ScholarPubMed
Hutton, M, Nanko, S. Association of neurotrophin-3 gene variant with severe forms of schizophrenia. Biochem Biophys Res Co 1995; 209: 513-8.Google Scholar
Hattori, M, Kuwata, S, Fukuda, R, Sasaki, T, Shibata, Y, Kazamatsuri, H, et al. Dinucleotide repeat polymorphism in the promoter region of neurotrophin-3 gene (NT-3). Hum Mol Genet 1993; 2: 15U.CrossRefGoogle Scholar
Hattori, M, Kunugi, H, Akahane, A, Tanaka, H, Ishida, S, Hirose, T, et al. Novel polymorphisms in the promoter region of the neurotrop hin-3 gene and their association with schizophrenia. Am J Med Genet 2002; 114: 304-9.CrossRefGoogle Scholar
Hawi, Z, Straub, RE, O'Neill, A, Kendler, KS, Walsh, D, Gili, M. No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinflcleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Res 1998; 81: 111-6.CrossRefGoogle ScholarPubMed
Heckers, S, Ranch, SL, Goff, D, Savage, CR, Schacter, DL, Fischman, AJ, et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1998; 1: 266-7.CrossRefGoogle Scholar
Heuckeroth, RO, Lampe, PA, Johnson, EM, Milbrandt, J. Neurturin and GDNF promote proliferanon and survival of enteric neuron and glial progenitors in vitro. Dev Biol 1998; 200: 116-29.CrossRefGoogle ScholarPubMed
Hofer, M, Pagliusi, SR, Hohn, A, Leibrock, J, Barde, YA. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 1990; 9: 1459-4.CrossRefGoogle ScholarPubMed
Horton, AR, Davis, AM, Buj-Bello, A, Bartlett, P, Murphy, M. Leukemia inhibitory factor and ciliary neurotrophic factor in sensory neuron development. Perspect Dev Neurobiol 1996; 4: 358.Google ScholarPubMed
Hyman, C, Hofer, M, Barde, YA, Juhasz, M, Yancopoulos, GD, Squinto, SP, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991; 350: 230-2.CrossRefGoogle ScholarPubMed
Ip, NY, Li, Y, Yancopoulos, GD, Lindsay, RM. Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGE J Neurosci 1993; 13: 394405.Google ScholarPubMed
Ip, NY, McClain, J, Barrezueta, NX, Aldrich, TH, Pan, L, Li, Y, et al. The alpha component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron 1993; 10: 89102.CrossRefGoogle ScholarPubMed
Iritani, S, Niizato, K, Nawa, H, Ikedas, K, Emsoon, PC. Immnohistochemical study of brain-denved neurotrophic factor and its receptor, trkB, in the hippocampal formation of schizophrenic brains. Prog Neuro-Psychopharmacol Biol Psychiatry 2003; 27: 801-7.CrossRefGoogle Scholar
Jacobsen, LK, Giedd, JN, Rajapakse, JC, Hamburger, SD, Vaituzis, AC, Frazier, JA, et al. Quantitative magnetic resonance imaging of the Corpus callosum in childhood onset schizophrenia. Psychiatry Res 1997; 68: 7786.CrossRefGoogle ScholarPubMed
Jakob, H, Beckmann, H. Prenatal development disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986; 65: 303-26.CrossRefGoogle ScholarPubMed
Jemingan, TL, Zisook, S, Heaton, RK, Moranville, JT, Hesselink, JR, Braff, DL. Magnetic resonance imaging abnormalities in lenticular and cerebral cortex in schizophrenia. Arch Gen Psychiatry 1991; 48: 881-90.Google Scholar
Jockers-Scherubl, MC, Matthies, U, Danker-Hopfe, H, Lang, UE, Mahlberg, R, Hellweg, R. Chronic cannabis abuse raises nerve growth factor serum concentrations in drug-naive schizophrenic patients. J Psychopharmacol 2003; 17: 439-45.CrossRefGoogle ScholarPubMed
Jones, P, Murray, RM. The genetics of schizophrenia is the genetics of neurodevelopment. Br J Psychiatry 1991; 158: 615-23.CrossRefGoogle ScholarPubMed
Jonsson, E, Brene, S, Zhang, XR, Nimgaonkar, VL, Tylec, A, Schalling, M, et al. Schizophrenia and neurotrophin-3 alieles. Acta Psychiatr Scand 1997; 95: 414-9.CrossRefGoogle Scholar
Kaisho, Y, Shintani, A, Nishida, M, Fukumoto, H, Igarashi, K. Developmental changes of neurotrophini-3 level in the mouse brain detected by a highly sensitive enzyme immunoassay. Brain Res . 1994; 666: 143-6.CrossRefGoogle ScholarPubMed
Kinon, BJ, Lieberman, JA. Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology 1996; 234.CrossRefGoogle Scholar
Kirsch, M, Hofmann, HD. Expression of ciliary neurotrophic factor receptor mRNA and protein in the early postnatal and adult rat nervous System. Neurosci Left 1994; 180: 163-6.CrossRefGoogle ScholarPubMed
Klyushnik, TP, Danilovskaya, EV, Vatolkina, OE, Turkova, IL, Tsutsul'kovskaya, MY, Orlova, VA, et al. Changes in the serum levels of autoantibody to nerve growth factor in patients with schizophrenia. Neurosci Behav Physiol 1999; 29: 355-7.CrossRefGoogle ScholarPubMed
Knipper, M, Berzaghi, MP, Blochl, A, Breer, H, Thoenen, H, Lindholm, D. Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci 1994; 6: 668-71.CrossRefGoogle ScholarPubMed
Kokala, Z, Metsis, M, Kokaia, M, Elmer, E, Lindvall, O. Co-expression of trkB and trkC receptors in CNS neurons suggests regulation by multiple neurotrophins. Neuroreport 1995; 6: 769-72.CrossRefGoogle Scholar
Konradi, C, Heckers, S. Haloperidol-induced Fos expression in stnatum is dependent upon transcription factor cyclic AMP response element binding protein. Neuroscience 1995; 65: 1051 61.CrossRefGoogle ScholarPubMed
Konradi, C, Heckers, S. Antipsychotic drugs and neuroplasticity: insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 2001; 50: 729-42.CrossRefGoogle ScholarPubMed
Kornhuber, J, Weller, M. Aktueller Stand der biochemischen Hypothesen zur Pathogenese der Schizophrenien. Nervenartz 1994:65:74154Google Scholar
Kornhuber, J, Mack-Burkhardt, F, Riederer, P, Hebenstreit, GF, Reynolds, GP, Andrews, HB, et al. [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 1989; 77: 231-6.CrossRefGoogle ScholarPubMed
Korsching, S. The neurotrophic factor concept: a reexamination. J Neurosci 1993; 13: 2739-48.CrossRefGoogle ScholarPubMed
Krebs, MO, Guillin, O, Bourdell, MC, Schwartz, JC, Olie, JP, Poirier, MF, et al. Brain-derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 2000; 5: 558-62.CrossRefGoogle Scholar
Kumar, S, Pena, LA, de Vellis J. CNS glial cells express neurotrophin receptors whose levels are regulated by NGF. Mol Brain Res 1993; 17: 163-8.CrossRefGoogle ScholarPubMed
Laudiero, LB, Aloe, L, Levi-Montaleini, R, Buttineilli, C, Schilter, D, Gillessen, S, et al. Multiple sclerosis patients express increased levels of B-nerve growth factor in cerebrospinal fluid. Neurosci Lett 1992; 147: 912.CrossRefGoogle ScholarPubMed
Lauer, M, Beckmann, H, Senitz, D. Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics. Psychiatry Res 2003; 122: 8997.CrossRefGoogle ScholarPubMed
Lee, K, Kunagi, H, Nanko, S. Glial cell line-derived neurotrophic factor (GDNF) gene and schizophrenia: polymorphism scrcening and association analysis. Psychiatry Res 2001; 104: 11-7.Google ScholarPubMed
Lev, AA, Rosen, DR, Kos, C, Clifford, E, Landes, G, Hauser, SL, et al. Human ciliary neurotrophic factor: localization to the proximal region of the long arm of chromosome 11 and association with CA/GT dinucleotide repeat. Genomics 1993; 16: 539-41.CrossRefGoogle Scholar
Leveque, JC, Macias, W, Rajadhyaksha, A, Carlson, RR, Barczak, A, Kang, S, et al. Intracellular modfllahon of NMDA receptor function by antipsychotic drugs. J Neurosci 2000; 20: 4011-20.CrossRefGoogle ScholarPubMed
Li, T, Vallada, H, Bell, R, Liu, X, Xie, T, Collier, DA. CNTF and psychiatric disorders. Nat Genet 1996; 13: 143-4.CrossRefGoogle ScholarPubMed
Lindholm, D, Hamner, S, Zirrgiebel, U. Neurotrophins and cerebellar development. Perspect Dev Neurobiol 1997; 5: 8394.Google ScholarPubMed
Lindsay, RM, Wiegand, SJ, Altar, CA, DiStefano, PS. Neurotrophic factors: from molecule to man. TINS 1994; 17: 182-9.Google Scholar
Lipska, BK, Khaing, ZZ, Weickert, CS, Weinberger, DR. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 2001; 14: 135-44.CrossRefGoogle ScholarPubMed
Lo, DC. A central role for ciliary neurotrophic factor? Proc Nati Acad Sci USA 1993; 90: 2557-8.CrossRefGoogle ScholarPubMed
Luts, A, Jonsson, SA, Guldberg-Kjaer, N, Bran, A. Uniform abnormalities in the hippocampus of five chronic schizophrenic men compared with age-matched Controls. Acta Psychiatr Scand 1998; 98: 60-4.CrossRefGoogle ScholarPubMed
Mac Lennan, AJ, Gaskin, AA, Lado, DC. CNTF receptor alpha mRNA expression in rodent cell lines and developing rat. Brain Res Mol Brain Res 1994; 25: 251-6.Google Scholar
Maisonpierre, PC, Belluscio, L, Fnedman, B, Alderson, RF, Wiegand, SJ, Furth, ME, et al. NT-3, BDNF and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 1990; 5: 501-9.CrossRefGoogle ScholarPubMed
Maness, LM, Kastin, AJ, Weber, JT, Banks, WA, Beckman, BS, Zadina, JE. The neurotrophins and their receptors: structure, function and neuropathology. Neurosci Biobehav Rev 1994; 18: 143-59.CrossRefGoogle ScholarPubMed
Marty, S, Carroll, P, Cellerion, A, Castren, E, Staiger, V, Thoenen, H, et al. Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J Neurosci 1996; 16: 675-87.CrossRefGoogle ScholarPubMed
McGufffin, P, Owen, MJ, Farmer, AE. Genetic basis of schizophrenia. Lancet 1995; 346: 678-82.CrossRefGoogle Scholar
Meredith, GE, Switzer, RC, Napier, TC. Short-term D2-receptor blockade induces synaptic degeneration, reduces levels of tyrosine : hydroxylase and brain-derived neurotrophic factor, and enhances D2-meidated firing in the ventral pallidflm. Brian Res 2004; 995: 14-22.CrossRefGoogle Scholar
Muglia, P, Vicente, AM, Verga, M, King, N, Macciardi, F, Kennedy, JL. Association between the BDNF gene and schizophrenia. Mol Psychiatry 2003; 8: 146-7.CrossRefGoogle Scholar
Muragaki, Y, Timothy, N, Leight, S, Hempstead, BL, Chao, MV, Trojanowski, JQ, et al. Expression of trk receptors in the developing and adult human central and peripheral nervous System. J Comp Neurol 1995; 356: 387-97. ‘CrossRefGoogle ScholarPubMed
Murase, K, Igarashi, K, Hayashi, K. Neurotrophin-3 levels !n the developing rat nervous system and in human samples. Clin Chim Acta 1994; 227: 23-6.CrossRefGoogle Scholar
Murray, RM. Neurodevelopmental schizophrenia: the rediscovery of dementia praecox. Br J Psychiatry [Suppl] 1994; 25: 612.CrossRefGoogle Scholar
Nanko, S, Hattori, M, Kuwata, S, Sasaki, T, Fukuda, R, Dal, XY, et al. Neurotrophin-3 gene polymorphism associated with schizophrenia. Acta Psychiatr Scand 1994; 89: 390-2.CrossRefGoogle ScholarPubMed
Nawa, H, Takahashi, M, Patterson, PH. Cytokine and growth factor involvement in schizophrenia-support for the developmental model. Mol Psychiatry 2000; 5: 594603.CrossRefGoogle Scholar
Nawa, H, Futamura, T, Mizuno, M, Takahashi, M, Toyooka, K, Someya, T. Contribution of neurotrophic factors and cytokines to schizophrenia. Nippon Rinsho 2003; 61: 521-8.Google Scholar
Nibuya, M, Morinobu, S, Duman, RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539-47.Google ScholarPubMed
Nimgaonkar, VL, Zhang, XR, Brar, JS, DeLeo, M, Ganguli, R. Lack of association of schizophrenia with the neurotrophin-3 gene locus. Acta Psychiatr Scand 1995; 92: 464-6.CrossRefGoogle ScholarPubMed
Nothen, MM, Cichon, S, Eggermann, K, Propping, P, Knapp, M, Maier, W, et al. CNTF and psychiatric disorders. Nat Genet 1996; 12: 123.Google Scholar
Numan, S, Lane-Ladd, SB, Zhang, L, Lundgren, KH, Russell, DS, Seroogy, KB, et al. Differential regulation of neurotrophin and trk receptor mRNAs in catecholaminergic nuclei during chronic opiate treatment and withdrawal. J Neurosci 1998; 18: 10700–8.CrossRefGoogle ScholarPubMed
Obrien, JS, Carson, GS, Seo, HC, Hiraiwa, M, Kishimoto, Y. Identification of prosaposin as a neurotrophic factor. Proc Nati Acad Sci USA 1994; 91: 9593-6.CrossRefGoogle Scholar
Ockel, M, Barde, YA. Neurotrophine: Uberlebensfaktoren far Nervenzellen. Neuroforum 1995; 3: 31-5.Google Scholar
Okazawa, H, Murata, M, Watanabe, M, Kamei, M, Kanazawa, I. Dopaminergic stimulation up-regulates the in viva expression of brainderived neurotrophic factor (BDNF) in the striatum. FEBS Left 1992; 313: 138-42.CrossRefGoogle Scholar
Oyesiku, NM, Evans, CO, Flouston, S, Darrell, RS, Smith, JS, Fulop, ZL, et al. Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 1999; 833: 161-72.CrossRefGoogle ScholarPubMed
Pennica, D, Shaw, KJ, Swanson, TA, Moose, MW, Shelton, DL, Lioncheck, KA, et al. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gpl30 signaling complex. J Biol Chem 1995; 270: 10915–22.Google ScholarPubMed
Pennica, D, Swanson, TA, Shaw, KJ, Kuang, WJ, Gray, CL, Beatty, BG, et al. Human cardiotrophin 1: protein and gene structure, biological and binding activities and chromosomal localisation. Cytokine 1996; 8: 183-9. .Google Scholar
Perez-Polo, JR, Westlund, K, Hall, K, Livingston, K. Levels of serum nerve growth factor in schizophrenia. Birth Defects 1978; 14: 311-21.Google Scholar
Pierce, RC, Bar∼, AA. The role of neurotrophic factors in psychostimulant-induced behavioural and neuronal plasticity. Res Neurosci 2001; 12: 95110.Google Scholar
Prakash, N, Cohen-Cory, S, Fros, RD. Rapid and opposite effects of BDNF and NGF on the functional organization of the adult cortex in viva. Nature 1996; 381: 702-6.Google Scholar
Proschel, M, Saunders, A, Roses, AD, MÜller, CR. Dinucleotide repeat polymorphism at the human gene for the brain-derived neurotrophic factor (BDNF). Hum Mol Genet 1992; 1: 353.CrossRefGoogle Scholar
Raedler, TJ, Knable, MB, Weinberger, DR. Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 1998; 8: 157-61.Google ScholarPubMed
Reynolds, GRAntipsychotic drug mechanism and neurotransmitter Systems in schizophrenia. Acta Psychiatr Scand [Suppl] 1994; 380: 3640.CrossRefGoogle Scholar
Rodríguez-Tébar, A, Dechant, G, Gotz, R, Barde, YA. Binding of neurotrophic-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J 1992; 11: 917-22.CrossRefGoogle Scholar
Sakai, T, Sasaki, T, Tatsumi, M, Kunugi, H, Hattori, M, Nanko, S. Schizophrenia and the ciliary neurotrophic factor (CNTF) gene: no evidence for association. Psychiatry Res 1997; 71: 710.Google ScholarPubMed
Sasaki, T, Dal, XY, Kuwata, S, Fukuda, R, Kunigi, H, Hattori, M, et al. Brain-derived neurotrophic factor gene and schizophrenia in Japanese subjects. Am J Med Genet 1997; 74: 443-4.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Schramm, M, Falkai, P, Feldmann, N, Knable, MB, Bayer, TA. Reduced tyrosine kinase receptor C mRNA levels in the frontal cortex of patients with schizophrenia. Neurosci Left 1998; 257: 65-8.CrossRefGoogle ScholarPubMed
Schroder, J, Essig, M, Baudendistel, K, Jahn, T, Gerdsen, I, Stockert, A, et al. Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: a study with functional magnetic resonance imaging. Neuroimage 1999; 9: 81-7.CrossRefGoogle ScholarPubMed
Shenton, ME, Kikinis, R, Jolesz, FA, Pollak, SD, LeMay, M, Wible, CG, et al. Abnormalities of the left temporal lobe amd thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. New Engl J Med 1992; 327: 604-12.Google Scholar
Shimizu, E, Hashimoto, K, Watanabe, H, Komatsu, N, Okamura, N, Koike, K, et al. Serum brain-denved neurotrophic factor (BDNF) levels in schizophrenia are indistinguishable from Controls. Neurosci Left 2003; 351: 111-4.Google ScholarPubMed
Snider, WD. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 1994; 77: 62738.CrossRefGoogle ScholarPubMed
Snider, WD, Johnson, EM. Neurotrophic molecules. Ann Neurol 1989; 26: 489506.Google ScholarPubMed
Soderstrom, S, Ebendal, T. The levels of neurotrophin-3 protein in the rat brain determined by enzyme immunoassay show a pattern distinct from nerve growth factor. Neurosci Left 1995; 189: 58.CrossRefGoogle ScholarPubMed
Spence, SA, Hirsch, SR, Brooks, DJ, Grasby, PM. Prefrontal cortex activity in people with schizophrenia and control subjects. Evidence from positron emission tomography for remission of ‘hypofrontality’ with recovery from acute schizophrenia. Br J Psychiatry 1998; 172: 316-23,Google ScholarPubMed
Staecker, H, Liu, W, Hartnick, C, Lefebvre, P, Malgrange, B, Moohen, G, et al. NT-3 combined with CNTF promotes survival of neurons in modulus-spiral ganglion explants. Neuroreport 1995; 6: 1533-7.CrossRefGoogle ScholarPubMed
Szekeres, G, Juhasz, A, Rimanoczy, A, Keri, S, Janka, Z. The C270T polymorphism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr Res 2003; 65: 15-8.CrossRefGoogle ScholarPubMed
Takahashi, M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 2001; 12: 361-73.CrossRefGoogle ScholarPubMed
Takahashi, R, Yokoji, H, Misawa, H, Hayashi, M, Hu, J, Deguchi, T. A null mutation in the human CNTF gene is not causally related to neurological diseases. Nat Genet 1994; 7: 7984.CrossRefGoogle Scholar
Takahashi, M, Shirakawa, O, Toyooka, K, Kitamura, N, Hashimoto, T, Maeda, K, et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 2000; 5: 293300.CrossRefGoogle ScholarPubMed
Talamini, LM, Koch, T, Luiten, PG, Koolhaas, JM, Korf, J. Interruptions of early cortical development affect limbic association areas and social behaviour in rats; possible relevance for neurodevelopmental disorders. Brain Res 1999; 857: 105-20.CrossRefGoogle Scholar
Tanaka, Y, Ujike, H, Fujiwara, Y, Takeda, T, Takehisa, Y, Kodama, M, et al. Schizophrenic psychoses and the CNTF null mutation. Neuroreport 1998; 9: 981-3.Google ScholarPubMed
Thoenen, H. The changing scene of neurotrophic factors. Trends Neuroci 1991; 14: 165-70.CrossRefGoogle ScholarPubMed
Thoenen, H. Neurotrophins and neuronal plasticity. Science 1996; 270: 593-8.Google Scholar
Thome, J, Baumer, A, Harsanyi, A, Foley, P, Kornhuber, J, Wiesbeck, GA, et al. The Gly-Glu bi-allele polymorphism of the neurotrophin-3 (NT-3) gene: aliele frequencies in a Caucasian population and relevance for psychiatric disorders. Neuroreport 1996; 7: 2123.CrossRefGoogle Scholar
Thome, J, Durany, N, Harsanyi, A, Foley, P, Palomo, A, Kornhuber, J, et al. A null mutation allele in the CNTF gene and schizophrenic psychoses. Neuroreport 1996; 7: 1413-6.CrossRefGoogle Scholar
Thome, J, Nara, K, Foley, P, Michel, T, Gsell, W, Retz, W, et al. Ciliary neurotrophic factor (CNTF) genotypes: influence on choline acetyltransferase (ChAT) and acetylcholine esterase (AChE) activities and neurotrophin-3 (NT-3) concentration in human post-mortem brain tissue. J Hirnforsch 1997; 38: 443-51.Google Scholar
Thome, J, Durany, N, Palomo, A, Foley, P, Harsanyi, A, Baumer, A, et al. Variants in neurotrophic factor genes (CNTF, NT-3) and schizophrenic psychoses: no associations in a Spanish population. Psychiatry Res 1997; 71: 15.CrossRefGoogle Scholar
Thome, J, Jonsson, E, Foley, P, Harsanyi, A, Sedvall, G, Riederer, RCiliary neurotrophic factor null mutation and schizophrenia in a Swedish population. Psychiatry Res 1997; 7: 7982.Google Scholar
Thome, J, Foley, P, Riederer R Neurotrophic factors and the maldevelopment hypothesis of schizophrenic psychosis. J Neural Transm 1998; 105: 85100.Google Scholar
Thome, J, Sakai, N, Shin, KH, Steffen, C, Zhang, YJ, Impey, S, et al. cAMP response element-mediated gene transcription is flpregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030-6.Google ScholarPubMed
Toyooka, K, Asama, K, Watanabe, Y, Muratake, T, Takahashi, M, Someya, T, et al. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res 2002; 110: 249-57.CrossRefGoogle ScholarPubMed
Tsai, G, Passani, LA, Slasher, BS, Carter, R, Baer, L, Kleinman, JE, et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 52: 829-36.CrossRefGoogle ScholarPubMed
Vezzani, A, Ravizza, T, Moneta, D, Conti, M, Borroni, A, Rizzi, M, et al. Brain-derived neurotrophic factor immunoreactivity in the limbic system of rats after acute seizures and during spontaneous convulsions: temporal evolution of changes as compared to neuropeptideY. Neuroscience 1999; 90: 1445-61.CrossRefGoogle Scholar
Virgos, C, Martorell, L, Valero, J, Figuera, L, Civeira, F, Joven, J, et al. Association study of schizophrenia with polymorphisms at six candidate genes. Schizophr Res 2001; 49: 6571.CrossRefGoogle ScholarPubMed
Wagner, JA, Kostyk, SK. Regulation of neural cell survival and differentiation by peptide growth factors. Curr Opin Cell Biol 1990; 2: 1050-7.CrossRefGoogle ScholarPubMed
Wang, S, Sun, C, Walczak, CA, Ziegle, JS, Kipps, BR, Goldin, LR, et al. Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nat Genet 1995; 10: 41-6.CrossRefGoogle ScholarPubMed
Wassink, TH, Nelson, JJ, Crowe, RR, Andreasen, NC. Heritability of BDNF alieles and their effects on brain morphology in schizophrenia. Am J Med Genet 1999; 88: 724-8.Google Scholar
Weickert, CS, Flyde, TM, Lipska, BK, Herman, MM, Weinberger, DR, Kleinman, JE. Reduced brain-denved neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003; 8: 592610.CrossRefGoogle ScholarPubMed
Weinberger, DR. From neuropathology to neurodevelopment. Lancet 1995; 346: 552-7.CrossRefGoogle ScholarPubMed
Weinberger, DR, Lipska, BK. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res 1995; 16: 87110.CrossRefGoogle ScholarPubMed
Widmer, HR, Heft-E Nuerotrophin-4/5 promotes survival and differentiation of rat striatal neurons developing in culture. Eur J Neurosci 1994; 6: 1669-79.Google Scholar
Winter, CG, Saotome, Y, Levison, SW, Hirsh, D. A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc Nati Acad Sci USA 1995; 92: 5865-9.CrossRefGoogle ScholarPubMed
Wozniak, W. Brain-derived neurotrophic factor (BDNF): role in neuronal development and survival. Folia Morphol (Warsz) 1993;52: 17381.Google ScholarPubMed
Wright, AF, Carothers, AD. CNTF in the embryo. Nat Genet 1994; 7: 460.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Factores neurotróficos y fisiopatología de las psicosis Esquizofrénicas
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Factores neurotróficos y fisiopatología de las psicosis Esquizofrénicas
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Factores neurotróficos y fisiopatología de las psicosis Esquizofrénicas
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details