Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-29T01:25:26.728Z Has data issue: false hasContentIssue false

Reconstructing the lifetime movements of ancient people: A Neolithic case study from southern England

Published online by Cambridge University Press:  25 January 2017

Janet Montgomery
Department of Archaeological Sciences, University of Bradford
Paul Budd
Department of Archaeological Sciences, University of Bradford
Jane Evans
NERC Isotope Geosciences Laboratory


A new procedure is described in which combined lead and strontium isotope analysis of archaeological human dental tissues can be used to comment on the lifetime movements of individuals. A case study is presented of four Neolithic burials – an adult female and three juveniles – from a shared burial pit excavated at Monkton-up-Wimbourne, Dorset. It is demonstrated that the adult's place of origin was at least 80km to the north-west in the area of the Mendips. It is also shown that all three juveniles moved over significant distances during their lives.

Un nouveau procédé qui combine une analyse des isotopes du plomb et du strontium trouvés dans les tissus dentaires humains archéologique peut aider à retracer les mouvements d'individus. Quatre individus néolithiques - une femme adulte et trois adolescents - d'une fosse à sépulture collective fouillée à Monkton-up-Wimbourne en Dorset servent comme illustration. Il est démontré que l'adulte est originaire de la région des Mendips au moins 80 km au nord-ouest et que les trois adolescents se sont déplacés considérablement durant leurs vies.



Eine neue Vorgehensweise ist beschrieben, bei der die Kombination von Blei-Isotopen- und Strontium-Isotopen-Analyse archäologisch gewonnener, menschlicher Zahngewebe dazu genutzt werden kann, Aussagen über die Wanderungen von Individuen während ihres Lebens zu gewinnen. Eine Fallstudie über vier neolithische Bestattungen eine weibliche Erwachsene und drei Jugendliche – wird vorgestellt, die in einer gemeinsamen Grabgrube in Monkton-up-Wimbourne, Dorset, gefunden wurden. Es wird vorgeführt, daß die Heimat der Erwachsenen mindestens 80 km nordwestlich lag, im Gebiet der Mendips. Es wird auch gezeigt, daß alle drei Jugendliche während ihres Lebens bedeutende Distanzen zurückgelegt haben.

Copyright © 2000 Sage Publications 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Åberg, G., 1995. The use of natural strontium isotopes as tracers in environmental studies. Water, Air and Soil Pollution 79:309322.Google Scholar
Barreiro, B., Budd, P., Chenery, C. and Montgomery, J., 1997. Combined Pb-, Sr. and O-isotope compositions of human dental tissues in life history reconstruction. Abstract. Papaer given at the Applied Isotope Geochemistry Conference, Lake Louise, Canada, September 1997.Google Scholar
Budd, P., Christensen, J., Haggerty, R., Halliday, A.N., Montgomery, J. and Young, S.M.M., 1997a. The measurement of biogenic lead within archaeological mammalian dental enamel for life history reconstruction and pollution exposure monitoring. Abstract. 213th ACS National Meeting, San Francisco April 13–17 1997, pp. 35—CEOC.Google Scholar
Budd, P., Gulson, B.L., Montgomery, J., Rainbird, P., Thomas, R.G. and Young, S.M.M., 1997b. The Use of Pb- & Sr-Isotopes for the Study of Pacific Islander Population Dynamics. Australian Archaeometry: Retrospectives for the Millennium, Sydney. Abstract 72.Google Scholar
Budd, P., Montgomery, J., Cox, A., Krause, P., Barreiro, B. and Thomas, R. G., 1998. The distribution of lead within ancient and modern human teeth: implications for long-term and historical exposure monitoring. The Science of the Total Environment 220:121136.Google Scholar
Budd, P., Montgomery, J., Rainbird, P., Thomas, R.G. and Young, S.M.M., 1999. Pb and Sr isotope composition of human dental enamel: an indicator of Pacific Islander population dynamics. In Galipaud, J.-C. and Lilley, I. (eds), The Pacific from 5000 to 2000BP: Colonisation and Transformatoins. Paris: Institut de Recherche pour le Developpement.Google Scholar
Budd, P., Montgomery, J., Barreiro, B. and Thomas, R.G., 2000. Differential diagenesis of strontium in archaeological dental tissues. Applied Geochemistry 15:687694.CrossRefGoogle Scholar
Budd, P., Montgomery, J., Evans, J. and Barreiro, B., in press. Human tooth enamel as a record of the comparative lead exposure of rehistoric and modern people. The Science of the Total Environment.Google Scholar
Dickin, A.P., 1995. Radiogenic Isotopes. Cambridge: Cambridge University Press.Google Scholar
Ericson, J.E., 1985. Strontium Isotope Characterization in the study of prehistoric human ecology. Journal of Human Evolution 14:503514.CrossRefGoogle Scholar
Evans, J.A., 1996. Dating the transition of smectite to illite in Palaeozoic mudrocks using the Rb-Sr whole-rock technique. Journal of the Geological Society of London 153:101108.CrossRefGoogle Scholar
Faure, G., 1986. Principles of Isotope Geology, 2nd edition. New York: John Wiley & Sons Inc.Google Scholar
Grandjean, P., 1988. Ancient skeletons as silent witnesses of lead exposures in the past. CRC Critical Reviews in Toxicology 19:1121.CrossRefGoogle ScholarPubMed
Grupe, G., Price, T.D., Schröter, P., Söllner, F., Johnson, C.M. and Beard, B. L., 1997. Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Applied Geochemistry 12:517525.Google Scholar
Gulson, B.L., 1996. Tooth analyses of sources and intensity of lead exposure in children. Environmental Health Perspectives 104:306312.Google Scholar
Gulson, B.L. and Wilson, D., 1994. History of lead exposure in children revealed from isotopic analyses of teeth. Archives of Environmental Health 49:279283.CrossRefGoogle ScholarPubMed
Gulson, B.L., Jameson, C.W. and Gillings, B. R., 1997. Stable lead isotopes in teeth as indicators of past domicile: a potential new tool in forensic science? Journal of Forensic Sciences 42:787791.Google Scholar
Hall-Martin, A.J., Van Der Merwe, N.J., Lee-Thorp, J.A., Armstrong, R.A., Mehl, C.H., Struben, S. and Tykot, R., 1991. Determination of species and geographic origin of rhinoceros horn by isotopic analysis and its possible application to trade control. Paper published in the International Rhino Conference: Rhinoceros Biology and Conservation: 123135. San Diego, California, USA, 1991.Google Scholar
Hillson, S., 1996. Dental Anthropology, 1st edition. Cambridge: Cambridge University Press.Google Scholar
Hisanaga, A., Eguchi, Y., Hirata, M. and Ishinishi, N., 1988. Lead levels in ancient and contemporary Japanese bones. Biological Trace Element Research 16:7785.CrossRefGoogle ScholarPubMed
Hurst, R.W. and Davis, T.E., 1981. Strontium isotopes as tracers of airborne fly ash from coal-fire power plants. Environmental Geology 3:363367.CrossRefGoogle Scholar
Ketterer, M.E., Peters, M.J. and Tisdale, P. J., 1991. Verification of a correction procedure for measurement of lead isotope ratios by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 6:439443.Google Scholar
Lower, S.K., Maurice, P.A., Traina, S.J. and Carlson, E. H., 1998. Aqueous Pb sorption by hydroxylapatite: applications of atomic force microscopy to dissolution, nucleation and growth studies. American Mineralogist 83:147158.CrossRefGoogle Scholar
Mackie, A., Townshend, A. and Waldron, H. A., 1975. Lead concentrations in bones from Roman York. Journal of Archaeological Science 2:235237.Google Scholar
Montgomery, J., Budd, P., Cox, A., Krause, P. and Thomas, R. G., 1999. LA-ICP-MS evidence for the distribution of lead and strontium in Romano-British, medieval and modern human teeth: implications for life history and exposure recon-struction. In Young, S.M.M., Pollard, A.M., Budd, P. and Ixer, R.A. (eds), Metals in Antiquity: 258261 BAR International Series 792. Oxford: Archaeopress.Google Scholar
Patterson, C.C., Ericson, J.E., Manea-Krichten, M. and Shirahata, H., 1991. Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. The Science of the Total Environment 107:205236.CrossRefGoogle ScholarPubMed
Price, T.D., Grupe, G. and Schröter, P., 1994a. Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. Applied Geochemistry 9:413417.Google Scholar
Price, T.D., Johnson, C.M., Ezzo, J.A., Ericson, J.E. and Burton, J. H., 1994b. Residential mobility in the prehistoric southwest United States: a preliminary study using strontium isotope analysis. Journal of Archaeological Science 21:315330.Google Scholar
Rabinowitz, M.B., Bellinger, D., Leviton, A. and Wang, J. D., 1991. Lead levels among various deciduous tooth types. Bulletin of Environmental Contamination and Toxicology 47:602608.Google Scholar
Sealy, J.C., Armstrong, R. and Schrire, C., 1995. Beyond lifetime averages: tracing life histories through isotopic analysis of different calcified tissues from archaeological skeletons. Antiquity 69:290300.Google Scholar
Sealy, J.C., Van Der Merwe, N.J., Sillen, A., Kruger, F.J. and Krueger, H.W., 1991. 87Sr/86Sr as a dietary indicator in modern and archaeological bone. Journal of Archaeological Science 18:399416.CrossRefGoogle Scholar
Shapiro, I.M., Needleman, H.L. and Tuncay, O. C., 1972. The lead content of human deciduous and permanent teeth. Environmental Research 5:467470.Google Scholar
Sillen, A. 1986. Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shungura Formation. Palaeobiology 12:311323.Google Scholar
Sillen, A., Hall, G., Richardson, S. and Armstrong, R., 1998. 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: implications for early hominid habitat preference. Geochimica et Cosmochimica Acta 62:24632473.CrossRefGoogle Scholar
Sillen, A. and Legeros, R., 1991. Solubility profiles of synthetic apatites and of modern and fossil bones. Journal of Archaeological Science 18:385397.Google Scholar
Thomas, J., 1999. Understanding the Neolithic. London: Routledge.Google Scholar
Underwood, E.J., 1977. Trace Elements in Human and Animal Nutrition. London: Academic Press.Google Scholar
Walder, A.J., Platzner, I. and Freedman, P. A., 1993. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, hafnium and hafnium-lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer. Journal of Analytical Atomic Spectrometry 8:1923.Google Scholar
Waldron, H.A., 1981. Postmodern absorption of lead by the skeleton. American Journal of Physical Anthropology 55:395398.Google Scholar
Waldron, H.A., Mackíe, A. and Townshend, A., 1976. The lead content of some Romano-British bones. Archaeometry 18:221227.Google Scholar
Whittle, A. 1999. The Neolithic period, c. 4000-2500/2200 BC: changing the world. In Hunter, J. and Ralston, I. (eds), The Archaeology of Britain: 5876. London: Routledge.Google Scholar