Skip to main content Accessibility help
×
Home

Straining flow of a weakly interacting polymer–surfactant solution

  • C. J. W. BREWARD (a1), I. M. GRIFFITHS (a1), P. D. HOWELL (a1) and C. E. MORGAN (a1)

Abstract

In this paper, we consider the straining flow of a weakly interacting polymer–surfactant solution below a free surface, with the bulk surfactant concentration above the critical micelle concentration. We formulate a set of coupled differential equations describing the concentration of monomers, micelles, polymer, and polymer–micelle aggregates in the flow. We analyse the model in several asymptotic limits, and make predictions about the distribution of each of the species. In particular, in the large-reaction-rate limit we find that the model predicts a region near the free surface where no micelles or aggregates are present, and beneath this a region where the concentration of surfactant is constant, across which the concentration of aggregates increases until all the free polymer is consumed. For certain parameter regimes, a maximum in the concentration of the polymer–micelle complex occurs within the bulk fluid. In the finite-reaction-rate limit, micelles, and aggregates are present right up to the free surface, and the plateau in the concentration of surfactant in the bulk is no longer present. Results from the asymptotic theory compare favorably with full numerical solutions.

Copyright

References

Hide All
[1]Adamson, A. W. (1982) Physical Chemistry of Surfaces, Wiley, New York, USA.
[2]Bahramian, A., Thomas, R. K. & Penfold, J. (2014) The adsorption behavior of ionic surfactants and their mixtures with nonionic polymers and with polyelectrolytes of opposite charge at the air-water interface. J. Phys. Chem. B 118 (10), 27692783.
[3]Bain, C. D., Manning-Benson, S. & Darton, R. C. (2000) Rates of mass transfer and adsorption of hexadecyltrimethylammonium bromide at an expanding air-water interface. J. Colloid Interface Sci. 229 (1), 247256.
[4]Bain, C. D. (2008) The overflowing cylinder sixty years on. Adv. Colloid Interface Sci. 144 (1), 412.
[5]Bell, C. G., Breward, C. J. W., Howell, P. D., Penfold, J. & Thomas, R. K. (2007) Macroscopic modelling of the surface tension of polymer–surfactant solutions. Langmuir 23 (11), 60426052.
[6]Bell, C. G., Breward, C. J. W, Howell, P. D., Penfold, J. & Thomas, R. K. (2010) A theoretical analysis of the surface tension profiles of strongly interacting polymer–surfactant systems. J. Colloid Interface Sci. 350 (2), 486493.
[7]Breward, C. J. W., Darton, R. C., Howell, P. D. & Ockendon, J. R. (2001) The effect of surfactant on expanding free surfaces. Chem. Eng. Sci. 56 (8), 28672878.
[8]Breward, C. J. W., & Howell, P. D. (2004) Straining flow of micellar surfactant solution. Eur. J. Appl. Math. 15 (5), 511531.
[9]Cabane, B. & Duplessix, R. (1985) Neutron-scattering study of water-soluble polymers adsorbed on surfactant micelles, Colloid Surf. 13, 1933.
[10]Goddard, E. D. (1986) Polymer–surfactant interaction part I. Uncharged water-soluble polymers and charged surfactants, Colloid Surf. 19 (2–3), 255300.
[11]Goddard, E. D. (1986) Polymer–surfactant interaction part II. Polymer and surfactant of opposite charge. Colloid Surf. 19 (2–3), 301329.
[12]Goddard, E. D. (2002) Polymer/surfactant interaction: Interfacial aspects. J. Colloid Interface Sci. 256 (1), 228235.
[13]Goddard, E. D. & Ananthapadmanabhan, K. P. (1993) Interactions of Surfactants with Polymers and Proteins, CRC Press, Boca Raton.
[14]Howell, P. D. & Breward, C. J. W. (2002) Mathematical modelling of the overflowing cylinder experiment. J. Fluid Mech. 458, 379406.
[15]Kwak, J. C. T. (1998) Polymer–Surfactant Systems, Surfactant Science Series, Vol. 77, Marcel Dekker, New York.
[16]Monteux, C. (2014) Adsorption of soluble polymers at liquid interfaces and in foams. C. R. Phys. 15 (8), 775785.
[17]Penfold, J., Sivia, D. S., Staples, E., Tucker, I., & Thomas, R. K. (2004) Surface ordering in dilute dihexadecyl dimethyl ammonium bromide solutions at the air–water interface. Langmuir 20 (6), 22652269.
[18]Purcell, I. P., Lu, J. R., Thomas, R. K., Howe, A. M. & Penfold, J. (1998) Adsorption of sodium dodecyl sulfate at the surface of aqueous solutions of poly(vinylpyrrolidone) studied by neutron reflection. Langmuir 14 (7), 16371645.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed