Skip to main content Accessibility help
×
Home

Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay

  • DEBORAH LACITIGNOLA (a1), BENEDETTO BOZZINI (a2) and IVONNE SGURA (a3)

Abstract

In this paper, we investigate from a theoretical point of view the 2D reaction-diffusion system for electrodeposition coupling morphology and surface chemistry, presented and experimentally validated in Bozzini et al. (2013J. Solid State Electr.17, 467–479). We analyse the mechanisms responsible for spatio-temporal organization. As a first step, spatially uniform dynamics is discussed and the occurrence of a supercritical Hopf bifurcation for the local kinetics is proved. In the spatial case, initiation of morphological patterns induced by diffusion is shown to occur in a suitable region of the parameter space. The intriguing interplay between Hopf and Turing instability is also considered, by investigating the spatio-temporal behaviour of the system in the neighbourhood of the codimension-two Turing--Hopf bifurcation point. An ADI (Alternating Direction Implicit) scheme based on high-order finite differences in space is applied to obtain numerical approximations of Turing patterns at the steady state and for the simulation of the oscillating Turing–Hopf dynamics.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay
      Available formats
      ×

Copyright

References

Hide All
[1]Aragon, J. L., Barrio, R. A., Woolley, T. E., Baker, R. E. & Maini, P. K. (2012) Nonlinear effects on Turing patterns: Time oscillations and chaos. Phys. Rev. E 86, 026201, 14.
[2]Banerjee, M. & Petrovskii S. (2011) Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theor. Ecol. 4, 3753.
[3]Baurmann, M., Gross, T. & Feudel, U. (2007) Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighbourhood of Turing-Hopf bifurcations. J. Theor. Biol. 245, 220229.
[4]Bogoliubov, N. N. & Mitropolski, Y. A. (1961) Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.
[5]Boissonade, J., Dulos, E. & De, Kepper P. (1995) Onset and beyond Turing pattern formation. In: Kapral, R. & Showalter, K. (editors), Chemical Waves and Patterns, Kluwer Academic Publishers, Dordrecht.
[6]Borckmans, P., Dewel, G., De Wit, A., Dulos, E., Boissonade, J., Gauffre, F. & De Kepper, P. (2002) Diffusive instabilities and chemical reactions. Int. J. Bif. Chaos 12, 23072332.
[7]Bozzini, B., Lacitignola, D. & Sgura, I. (2008) A reaction-diffusion model of spatial pattern formation in electrodeposition. J. Phys.: Conf. Ser. 96, 012051.
[8]Bozzini, B., D'Urzo, L., Lacitignola, D., Mele, C., Sgura, I. & Tondo, E. (2009) An investigation into the dynamics of Au electrodeposition based on the analysis of SERS spectral time series. Trans. Inst. Met. Fin. 87, 193200.
[9]Bozzini, B., Lacitignola, D. & Sgura, I. (2010) Morphological spatial patterns in a reaction diffusion model for metal growth. Math. Biosci. Eng. 7, 237258.
[10]Bozzini, B., Sgura, I., Lacitignola, D., Mele, C., Marchitto, M. & Ciliberto, A. (2010) Prediction of morphological properties of smart-coatings for Cr replacement, based on mathematical modelling. Adv. Mat. Res. 138, 93106.
[11]Bozzini, B., Lacitignola, D. & Sgura, I. (2011) Travelling waves in a reaction-diffusion model for electrodeposition. Math. Comput. Simul. 81, 10271044.
[12]Bozzini, B., Lacitignola, D. & Sgura, I. (2011) Frequency as the greenest additive for metal plating: Mathematical and experimental study of forcing voltage effects on electrochemical growth dynamics. Int. J. Electrochem. Sci. 6, 45534571.
[13]Bozzini, B., Lacitignola, D., Mele, C. & Sgura, I. (2012) Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: A review of the reaction-diffusion approach. Acta Appl. Math. 122, 5368.
[14]Bozzini, B., Lacitignola, D., Mele, C. & Sgura, I. (2012) Morphogenesis in metal electrodeposition. Note di Matem. 32, 746.
[15]Bozzini, B., Lacitignola, D. & Sgura, I. (2013) Spatio-temporal organisation in Alloy electrodeposition: A morphochemical mathematical model and its experimental validation. J. Solid State Electrochem. 17, 467479.
[16]Mele, C., Catalano, M., Taurino, A. & Bozzini, B. (2013) Electrochemical fabrication of NPG-supported manganese oxide nanowires based on electrodeposition from eutectic urea/choline chloride ionic liquid. Electrochim. Acta 87, 918924.
[17]Bozzini, B., Gianoncelli, A., Mele, C. & Kiskinova, M. (2013) Electrochemical fabrication of nanoporous gold decorated with manganese oxide nanowires from eutectic urea/choline chloride ionic liquid. Part II - Electrodeposition of Au–Mn: A study based on soft X-ray microspectroscopy. Electrochim. Acta, 114, 889896.
[18]Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. (1990) Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953.
[19]Crawford, J. D. (1991) Introduction to bifurcation theory. Rev. Mod. Phys. 63, 9911037.
[20]Cross, M. C. & Honenberg P. C. (1993) Pattern formation outside the equilibrium. Rev. Mod. Phys. 65, 8511112.
[21]Cross, M. & Greenside, H. (2009) Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press, Cambridge.
[22]Dewel, G., Borckmans, P., De Wit, A., Rudovics, B., Perraud, J., Dulos, E., Boissonade, J. & Kepper, P. D. (1995) Pattern selection and localized structures in reaction-diffusion systems, Physica A 213, 181198.
[23]Dewel, G., De Wit, A., Metens, S., Verdasca, J. & Borckmans, P. (1996) Pattern selection in reaction-diffusion systems with competing bifurcations. Phys. Scr. T67, 5157.
[24]De Wit, A., Lima, D., Dewel, G. & Borckmans, P. (1996) Spatiotemporal dynamics near a codimension-two point. Phys. Rev. E 54, 261271.
[25]De Wit, A. (1999) Spatial patterns and spatiotemporal dynamics in chemical systems. Adv. Chem. Phys. 109, 435513.
[26]Dobrovolska, Ts., Krastev, I., Zabinski, P., Kowalik, R. & Zielonka, A. (2011) Oscillations and self-organization phenomena during electrodeposition of silver-indium alloys. Experimental study. Arch. Metall. Mater. 56, 645657.
[27]Dobrovolska, Ts., Lopez-Sauri, D. A., Veleva, L. & Krastev, I. (2012) Oscillations and spatio-temporal structures during electrodeposition of AgCd alloys. Electrochim. Acta 79, 162169.
[28]Epstein, J. M. (1997) Nonlinear Dynamics, Mathematical Biology and Social Science, Addison-Wesley, Reading, MA.
[29]Gambino, G., Lombardo, M. C. & Sammartino, M. (2012) Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion. Math. Comput. Simul. 82, 11121132.
[30]Gambino, G., Lombardo, M. C. & Sammartino, M. (2013) Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. Real World Appl. 14, 17551779.
[31]Gross, T. & Feudel, U. (2006) Generalized models as a universal approach to the analysis of nonlinear dynamical systems. Phys. Rev. E 75, 114.
[32]Hoyle, R. (2006) Pattern Formation. An Introduction to Methods, Cambridge University Press, Cambridge.
[33]Just, W., Bose, M., Bose, S., Engel, H. & Scholl, E. (2001) Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system. Phys. Rev. E 64, 112.
[34]Kaminaga, A., Vanag, V. K. & Epstein, I. R. (2005) ‘Black spots’ in a surfactant-rich BZ-AOT microemulsion system. J. Chem. Phys. 122, 174706, 111.
[35]Kapral, R. & Showalter, K. (1995) Chemical Waves and Patterns, Kluwer Academic Publishers, Dordrecht.
[36]Koper, M. T. M. (1998) Non-linear phenomena in electrochemical systems. J. Chem. Soc. Faraday Trans. 94, 13691378.
[37]Krastev, I. & Koper M. T. M. (1995) Pattern formation during the electrodeposition of a silver-antimony alloy. Physica A 213, 199208.
[38]Krastev, I. (2009) Self-structured silver alloy coatings and their properties. J. Eng. Process. Manage. 1, 104112.
[39]Krastev, I., Dobrovolska Ts., Lacnjevac U. & Nineva S. (2012) Pattern formation during electrodeposition of indium-cobalt alloys. J. Solid State Electrochem. 16, 34493456.
[40]Krischer, K., Mazouz, N. & Grauel, P. (2001) Fronts, waves, and stationary patterns in electrochemical systems. Angew. Chem. Int. Ed. 40, 850869.
[41]Lacitignola, D., Bozzini, B. & Sgura, I. (2014) Spatio-temporal organization in a morphochemical electrodeposition model: Analysis and numerical simulation of spiral waves. Acta Appl. Math.,132, 377389.
[42]Lee, K. J., McCormick, W. D., Ouyang, Q. & Swinney, H. L. (1993) Pattern Formation by Interacting Chemical Fronts. Sci. New Ser. 261(5118), 192194.
[43]Leppanen, T., Karttunen, M., Kaski, K. & Barrio, R. A. (2004) Turing systems as models of complex pattern formation. Braz. J. Phys. 34, 368372.
[44]Leppänen, T., Karttunen, M., Barrio, R. A. & Kaski, K. (2004) Morphological transitions and bistability in Turing systems. Phys. Rev. E 70, 066202.
[45]Li, Y-J., Oslonovitch, J., Mazouz, N., Plenge, F., Krischer, K. & Ertl, G. (2001) Turing-type patterns on electrode surfaces. Science 291, 23952398.
[46]Maini, P. K. & Othmer, H. G. (2001) Mathematical models for biological pattern formation. In: The IMA Volumes in Mathematics and its Applications - Frontiers in Applications of Mathematics, Vol. 121, Springer, New York.
[47]Maini, P. K. (2004) Using mathematical models to help understand biological pattern formation. C. R. Biol. 327, 225234.
[48]Malchow, H., Petrovskii, S. V. & Venturino, E. (2008) Spatiotemporal Patterns in Ecology and Epidemiology, Chapman & Hall, U.K.
[49]Meixner, M., De Wit, A., Bose, S. & Scholl, E. (1997) Generic spatiotemporal dynamics near codimension-two Turing Hopf bifurcations. Phys. Rev. E 55, 66906697.
[50]Miguez, D. G., Alonso, S., Munuzuri, A. P. & Sagues, F. (2006) Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction. Phys. Rev. Lett. 97, 178301, 14.
[51]Murray, J. D. (2002) Mathematical Biology II; Spatial Models and Biomedical Applications, 3rd ed., Springer, New York.
[52]Orbán, M., Kurin-Csörgei, K., Zhabotinsky, A. M. & Epstein, I. R. (2001) A new chemical system for studying pattern formation: Bromate-Hypophosphite-Acetone - dual catalyst. Faraday Disc. 120, 1119.
[53]Ouyang, Q. & Swinney, H. L. (1991) Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610612.
[54]Perraud, J. J., Agladze, K., Dulos, E. & De Kepper, P. (1992) Stationary Turing patterns versus time-dependent structures in the chlorite-iodide-malonic acid reaction. Physica A 188, 116.
[55]Ricard, M. R. & Michler, S. (2009) Turing Instabilities at Hopf bifurcation. J. Nonlinear Sci. 19, 467496.
[56]Rovinsky, A. & Menzinger M. (1992) Interaction of Turing and Hopf bifurcations in chemical systems. Phys. Rev. A 46, 63156322.
[57]Rudovics, B., Dulos, E. & de Kepper, P. (1996) Standard and nonstandard Turing patterns and waves in the CIMA reaction. Phys. Scr. T67, 4350.
[58]Sagués, F. & Epstein, I. R. (2003) Nonlinear chemical dynamics. Dalton Trans. 12011217.
[59]Saitou, M. & Fukuoka, Y. (2004) An experimental study on stripe pattern formation of Ag-Sb electrodeposits. J. Phys. Chem. B 108, 53805385.
[60]Saitou, M. & Fukuoka, Y. (2004) A study on transient changes of surface morphologies in Ag and Sb coelectrodeposition. J. Electrochem. Soc. 151, C627C632.
[61]Saitou, M. & Fukuoka, Y. (2005) Stripe patterns in Ag-Sb co-electrodeposition. Electrochim. Acta 50, 50445049.
[62]Sanders, J. A. & Verhulst, F. (1985) Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, Vol. 59, Springer, New York.
[63]Sgura, I., Bozzini, B. & Lacitignola, D. (2012) Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math. 236, 41324147.
[64]Sgura, I., Bozzini, B. & Lacitignola, D. (2012) Numerical approximation of oscillating Turing patterns in a reaction-diffusion model for electrochemical material growth. AIP Conf. Proc. 1493, 896903.
[65]Sherratt, J. A. (2012) Turing patterns in deserts. In: Cooper, S. B., Dawar, A. & Lowe, B. (editors), How the World Computes, Lecture Notes in Computer Science, Vol. 7318, Springer, New York, pp. 667674.
[66]Turing, A. M. (1952) The chemical bases of morphogenesis, Phil. Trans. R. Soc. London B 237, 3772.
[67]Vanag, V. K. & Epstein I. R. (2008) Design and control of patterns in reaction-diffusion systems. Chaos 18, 026107, 111.
[68]Vanag, V. K. & Epstein I. R. (2009) Pattern formation mechanisms in reaction-diffusion systems. Int. J. Dev. Biol. 53, 673681.
[69]Yang, L., Dolnik, M., Zhabotinsky, A. M. & Epstein, I. R. (2002) Spatial resonances and superposition patterns in a reaction-diffusion model with interacting Turing modes. Phys. Rev. Lett. 88, 208303, 14.
[70]Yang, L. & Epstein, I. R. (2003) Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett. 90, 178303, 14.

Keywords

Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay

  • DEBORAH LACITIGNOLA (a1), BENEDETTO BOZZINI (a2) and IVONNE SGURA (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed