Skip to main content Accessibility help
×
Home

Shadow boundary effects in hybrid numerical-asymptotic methods for high-frequency scattering

  • D. P. HEWETT (a1)

Abstract

The hybrid numerical-asymptotic (HNA) approach aims to reduce the computational cost of conventional numerical methods for high-frequency wave scattering problems by enriching the numerical approximation space with oscillatory basis functions, chosen based on partial knowledge of the high-frequency solution asymptotics. In this paper, we propose a new methodology for the treatment of shadow boundary effects in HNA boundary element methods, using the classical geometrical theory of diffraction phase functions combined with mesh refinement. We develop our methodology in the context of scattering by a class of sound-soft non-convex polygons, presenting a rigorous numerical analysis (supported by numerical results) which proves the effectiveness of our HNA approximation space at high frequencies. Our analysis is based on a study of certain approximation properties of the Fresnel integral and related functions, which govern the shadow boundary behaviour.

Copyright

Corresponding author

Current address: Mathematical Institute, University of Oxford, UK Email: hewett@maths.ox.ac.uk

References

Hide All
[1]Digital Library of Mathematical Functions. National Institute of Standards and Technology, from http://dlmf.nist.gov/, release date: 2010-05-07.
[2]Alazah, M., Chandler-Wilde, S. N. & La Porte, S. (2014) Computing Fresnel integrals via modified trapezium rules. Numer. Math. 128, 635661.
[3]Asheim, A. & Huybrechs, D. (2010) Local solutions to high-frequency 2D scattering problems. J. Comput. Phys. 229, 53575372.
[4]Borovikov, V. A. & Kinber, B. Y. (1994) Geometrical Theory of Diffraction, Institution of Electrical Engineers, London.
[5]Bowman, J. J., Senior, T. B. A. & Uslenghi, P. L. E. (1969) Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland, Amsterdam.
[6]Chandler-Wilde, S. N., Graham, I. G., Langdon, S. & Spence, E. A. (2012) Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89305.
[7]Chandler-Wilde, S. N., Hewett, D. P., Langdon, S. & Twigger, A. (2015) A high frequency boundary element method for scattering by a class of nonconvex obstacles. Numer. Math. 129, 647689.
[8]Chandler-Wilde, S. N. & Langdon, S. (2007) A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45, 610640.
[9]Dominguez, V., Graham, I. G. & Smyshlyaev, V. P. (2007) A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106, 471510.
[10]Ganesh, M. & Hawkins, S. C. (2011) A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230, 104125.
[11]Groth, S. G., Hewett, D. P. & Langdon, S. (2015) Hybrid numerical-asymptotic approximation for high frequency scattering by penetrable convex polygons. IMA J. Appl. Math. 80, 324353.
[12]Hewett, D. P. (2015) Tangent ray diffraction and the Pekeris caret function. Wave Motion. 57, 257267.
[13]Hewett, D. P., Langdon, S. & Chandler-Wilde, S. N. (2014) A frequency-independent boundary element method for scattering by two-dimensional screens and apertures. IMA J. Numer. Anal. doi: 10.1093/imanum/dru043.
[14]Hewett, D. P., Langdon, S. & Melenk, J. M. (2011) A high frequency hp boundary element method for scattering by convex polygons, University of Reading Department of Mathematics and Statistics Preprint MPS-2011-118.
[15]Hewett, D. P., Langdon, S. & Melenk, J. M. (2013) A high frequency hp boundary element method for scattering by convex polygons. SIAM J. Numer. Anal. 51, 629653.
[16]Keller, J. B. (1962) Geometrical theory of diffraction. J. Opt. Soc. Am. 52, 116130.
[17]Kouyoumjian, R. G. & Pathak, P. H. (1974) A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62, 14481461.
[18]Oberhettinger, F. (1956) On asymptotic series for functions occuring in the theory of diffraction of waves by wedges. J. Math. Phys. 34, 245255.
[19]Ockendon, J. R. & Tew, R. H. (2012) Thin-layer solutions of the Helmholtz and related equations. SIAM Rev. 54 (1), 351.
[20]Perrey-Debain, E., Lagrouche, O., Bettess, P. & Trevelyan, J. (2004) Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Philos. Trans. R. Soc. Lond. Ser. A 362, 561577.
[21]Spence, E. A., Chandler-Wilde, S. N., Graham, I. G. & Smyshlyaev, V. P. (2011) A new frequency-uniform coercive boundary integral equation for acoustic scattering. Commun. Pure Appl. Math. 64, 13841415.
[22]Stenger, F. (1993) Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag.
[23]Tew, R. H., Chapman, S. J., King, J. R., Ockendon, J. R., Smith, B. J. & Zafarullah, I. (2000) Scalar wave diffraction by tangent rays. Wave Motion 32, 363380.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed