[1] Aptekarev, A. I., Buslaev, V. I., Martines-Finkelstein, A. & Suetin, S. P. (2011) Padé approximations, continued fractions, and orthogonal polynomials. Russ. Math. Surv. 66 (6), 1049–1131.

[2] Baker, G. R. & Xie, C. (2011) Singularities in the complex physical plane for deep water waves. J. Fluid Mech. 685, 83–116.

[3] Baumel, R. T., Burley, S. K., Freeman, D. F., Gammel, J. L. & Nuttal, J. (1982) The rise of a cylindrical bubble in an inviscid liquid. Can. J. Phys. 60 (7), 999–1007.

[4] Belykh, V. N. (2017) On the evolution of a finite volume of ideal incompressible fluid with a free surface. Dokl. Phys. 62 (4), 213–217.

[5] Belykh, V. N. (2017) Well-posedness of a nonstationary axisymmetric hydrodynamic problem with free surface. Siberian Math. J. 58 (4), 564–577.

[6] Bieberbach, L. (1955) Analytische Fortsetzung, Berlin: Springer-Verlag.

[7] Crew, S. C. & Trinh, P. H. (2016) New singularities for Stokes waves. J. Fluid Mech. 798, 256–283.

[8] Cummings, S. D., Howison, S. D. & King, J. R. (1999) Two-dimensional Stokes and Hele–Shaw flows with free surfases. Eur. J. Appl. Math. 10 (6), 635–680.

[9] Curle, N. (1956) Unsteady two-dimensional flows with free boundaries. Pros. Roy. Soc. London Ser. A. 235 (1202), 375–395.

[10] Dallaston, M. C. & Mc Cue, S. W. (2010) Accurate series solutions for gravity-driven Stokes waves. Phys. Fluids 22 (8), 82–104.

[11] Dorodnitsyn, A. A. (1965) Plane problem of unsteady motions of a heavy fluid. In: *Proceedings of International Symposium in Tbilisi “Applications of the function theory in mechanics of continuous media*,” Moscow, Nauka, Vol. 2, pp. 171–172 (in Russian).

[12] Dyachenko, A. I. (2001) On the dynamics of an ideal fluid with a free surface. Dokl. Math. 63 (1), 115–118; Translated from *Dokl. Akad. Nauk.* **376**(1), 27–29.

[13] Dyachenko, S. A., Lushnikov, P. M. & Korotkevich, A. O. (2016) Branch cuts of stokes wave on deep water. Part 1: Numerical solution and Pade approximation. Stud. Appl. Math. 137 (4), 419–472.

[14] Dyachenko, A. I. & Zakharov, V. E. (1994) Is free-surface hydrodynamics an integrable system? Phys. Lett. A 190 (2), 144–148.

[15] Galin, L. A. (1945) Unsteady filtration with a free surface. Dokl. Akad. Nauk SSSR 47, 246–249 (in Russian).

[16] Gammel, J. L. (1976) The rise of a bubble in a fluid. Lecture Notes Phys. 47, 141–163.

[17] Gaunt, D. S. & Guttman, A. J. (1974) Asymptotic analysis of coefficients. In: Phase Transitions and Critical Phenomena, Vol. 3, Domb, C. and Green, M.S. (eds.), Academic Press, London, pp. 181–243.

[18] Gurevich, M. I. (1965) Theory of Jets in Ideal Fluids, N.Y.: Academic Press.

[19] Jounstone, E. A. & Mackie, A. G. (1973) The use of Lagrangian coordinates in the water entry and related problems. Proc. Camb. Phil. Soc. 74 (3), 529–538.

[20] Karabut, E. A. (1991) Semi-analytical investigation of unsteady free-boundary flows. Int. Ser. Numer. Math. 99, 215–224.

[21] Karabut, E. A. (1996) Asymptotic expansions in the problem of a solitary wave. J. Fluid Mech. 319, 109–123.

[22] Karabut, E. A. (1998) An approximation for the highest gravity waves on water of finite depth. J. Fluid Mech. 372, 45–70.

[23] Karabut, E. A. (2013) Exact solutions of the problem of free-boundary unsteady flows. C. R. Mec. 341 (6), 533–537.

[24] Karabut, E. A. & Kuzhuget, A. A. (2014) Conformal mapping, Padé approximants and example of flow with significant deformation of free boundary. Eur. J. Appl. Math. 25 (6), 729–747.

[25] Karabut, E. A. & Zhuravleva, E. N. (2014) Unsteady flows with a zero acceleration on the free boundary. J. Fluid Mech. 754, 308–331.

[26] Karabut, E. A. & Zhuravleva, E. N. (2016) Reproduction of solutions in the plane problem of motion of a free-boundary fluid. Dokl. Phys. 61 (7), 346–349; Translated from *Dokl. Akad. Nauk.* **61**(3), 295–298.

[27] Kuznetsov, E. A., Spector, M. D. & Zakharov, V. E. (1994) Formation of singularities on the free surface of an ideal fluid. Phys. Rev. E. 49 (2), 1283–1290.

[28] Lavrent'ev, M. A. & Shabat, B. V. (1973) *Methods of the Function Theory of a Complex Variable*, Moscow Nauka (in Russian).

[29] Longuet-Higgins, M. S. (1975) Integral properties of periodic gravity waves of finite amplitude. Proc. R. Soc. London Ser. A. 342 (1629), 157–174.

[30] Longuet-Higgins, M. S. (1972) A class of exact, time-dependent, free surface flows. J. Fluid Mech. 55 (3), 529–543.

[31] Lushnikov, P. M. (2016) Structure and location of branch point singularities for Stokes waves on deep water. J. Fluid Mech. 800, 557–594.

[32] Makarenko, N. I. & Kostikov, V. K. (2013) Unsteady motion of an elliptic cylinder under a free surface. J. Appl. Mech. Tech. Phys. 54 (3), 367–376.

[33] Menikoff, R. & Zemach, C. (1983) Rayleigh–Taylor instability and the use of conformal maps for ideal fluid flow. J. Comput. Phys. 51 (1), 28–64.

[34] Nuttal, J. (1980) Sets of minimum capacity, Padé approximants and the bubble problem. In: Bardos, C., Bessis, D. (eds) Bifurcation Phenomena in Mathematical Physics and Related Topics. NATO Advanced Study Institutes Series (Series C–Mathematical and Physical Sciences), vol 54. Springer, Dordrecht, pp. 185–201.

[35] Ovsyannikov, L. V. (1967) General equation and examples. In: The Problem of the Unstable Flow with a Free Boundary, Nauka, Novosibirsk, pp. 5–75 (in Russian).

[36] Ovsyannikov, L. V. (1970) On bubble rising. In: Some Problems of Mechanics and Mathematics, Leningrad, Nauka, p. 209 (in Russian).

[37] Ovsyannikov, L. V. (1971) Plane problem of unsteady motion of a fluid with free boundaries. Dynamics of Continuous Media 8, 22–26 (in Russian).

[38] Pearce, G. J. (1978) Transformation methods in the analysis of series for critical properties. Adv. Phys. 27 (1), 89–145.

[39] Pukhnachov, V. V. (1978) On the motion of liquid ellipse. Dynamics of Continuous Media 33, 68–75 (in Russian).

[40] Polubarinova-Kochina, P. Ya. (1945) On the motion of the oil contour. Dokl. Akad. Nauk SSSR 47, 254–257 (in Russian).

[41] Rowe, P. N. & Partridge, B. A. (1964) A note on the initial motion and break-up of two-dimensional air-bubble in water. Chem. Eng. Sci. 19 (1), 81–82.

[42] Shamin, R. V. (2008) Computational Experiments Aimed at Simulating Surface Waves in the Ocean, Moscow, Nauka (in Russian).

[43] Stahl, H. (1997) The convergence of Padé approximants to functions with branch points. J. Approx. Theory 91 (2), 139–204.

[44] Stoker, J. J. (1957) Water Waves. The Mathematical Theory with Applications, Interscience, New York.

[45] Suetin, S. P. (2010) Numerical analysis of some characteristics of the limit cycle of the free van der Pol equation. Sovrem. Probl. Mat. 14, 3–57.

[46] Suetin, S. P. (2015) Distribution of the zeros of Padé polynomials and analytic continuation. Russian Math. Surv. 70 (5), 901–951.

[47] Tanveer, S. (1991) Singularities in water waves and Rayleigh–Taylor instability. Proc. R. Soc. Lond. A. 435 (1893), 137–158.

[48] Trefethen, L. N. (1980) Numerical computation of the Schwarz–Christoffel transformation. SIAM J. Sci. Stat. Comput. 1 (1), 82–102.

[49] Van Dyke, M. (1975) Computer extension of perturbation series in fluid mechanics. SIAM J. Appl. Math. 28 (3), 720–734.

[50] Van Dyke, M. (1978) Semi-analytical applications of the computer. Fluid Dyn. Trans. Warszawa. 9, 305–320.

[51] Van Dyke, M. (1981) Successes and surprises with computer-extended series. Lecture Notes Phys. 141, 405–410.

[52] Voinov, O. V. & Voinov, V. V. (1975) Numerical method for calculating unsteady motions of an incompressible ideal fluid with free surfaces. Dokl. Akad. Nauk. 221 (3), 559–562 (in Russian).

[53] Walters, J. K. & Davidson, J. F. (1962) The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The two-dimensional bubble. J. Fluid Mech. 12 (3), 408–416.

[54] Zakharov, V. E. (2016) Free-surface hydrodynamics in conformal variables: Are equations of free-surface hydrodynamics on deep water integrable? *arXiv:1604.04778v1 [math-ph]*

[55] Zakharov, V. E., Dyachenko, A. I. & Vasilyev, O. A. (2002) New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. Europ. J. Mech. B. 21 (3), 283–291.

[56] Zubarev, N. M. & Kuznetsov, E. A. (2014) Singularity formation on a fluid interface during the Kelvin–Helmholtz instability development. J. Exp. Theor. Phys. 119 (1), 169–178.