Skip to main content Accessibility help
×
Home

A non-local traffic flow model for 1-to-1 junctions

Abstract

We present a model for a class of non-local conservation laws arising in traffic flow modelling at road junctions. Instead of a single velocity function for the whole road, we consider two different road segments, which may differ for their speed law and number of lanes (hence their maximal vehicle density). We use an upwind type numerical scheme to construct a sequence of approximate solutions, and we provide uniform L and total variation estimates. In particular, the solutions of the proposed model stay positive and below the maximum density of each road segment. Using a Lax–Wendroff type argument and the doubling of variables technique, we prove the well-posedness of the proposed model. Finally, some numerical simulations are provided and compared with the corresponding (discontinuous) local model.

Copyright

References

Hide All
[1]Adimurthi, S. M. & Gowda, G. V. (2005) Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(04), 783837.
[2]Aggarwal, A., Colombo, R. M. & Goatin, P. (2015) Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53(2), 963983.
[3]Amorim, P., Colombo, R. & Teixeira, A. (2015) On the numerical integration of scalar nonlocal conservation laws. ESAIM M2AN 49(1), 1937.
[4]Andreianov, B., Karlsen, K. H. & Risebro, N. H. (2011) A theory of L1–dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201(1), 2786.
[5]Betancourt, F., Bürger, R., Karlsen, K. H. & Tory, E. M. (2011) On nonlocal conservation laws modelling sedimentation. Nonlinearity 24(3), 855885.
[6]Blandin, S. & Goatin, P. (2016). Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132(2), 217241.
[7]Bürger, R., Karlsen, K. H. & Towers, J. D. (2009). An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 16841712.
[8]Chiarello, F. A. & Goatin, P. (2018) Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: M2AN 52(1), 163180.
[9]Chiarello, F. A. & Goatin, P. (2019) Non-local multi-class traffic flow models. Netw. Heterog. Media 14(2), 371387.
[10]Chiarello, F. A., Goatin, P. & Rossi, E. (2019) Stability estimates for non-local scalar conservation laws. Nonlinear Anal. Real World Appl. 45, 668687.
[11]Colombo, M., Crippa, G., Graff, M. & Spinolo, L. V. (2019) Recent results on the singular local limit for nonlocal conservation laws. arXiv preprint arXiv:1902.06970.
[12]Colombo, R. M., Garavello, M. & Lécureux-Mercier, M. (2012) A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22(04), 1150023.
[13]Colombo, R. M., Mercier, M. & Rosini, M. D. (2009) Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7(1), 3765.
[14]Diehl, S. (1995). On scalar conservation laws with point source and discontinuous flux function. SIAM J. Math. Anal. 26(6), 14251451.
[15]Diehl, S. (2009) A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 6(01), 127159.
[16]Eymard, R., Gallouët, T. & Herbin, R. (2000). Finite volume methods. In: Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, pp. 7131020.
[17]Friedrich, J., Kolb, O. & Göttlich, S. (2018). A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media 13(4), 531547.
[18]Göttlich, S., Hoher, S., Schindler, P., Schleper, V. & Verl, A. (2014). Modeling, simulation and validation of material flow on conveyor belts. Appl. Math. Model. 38(13), 32953313.
[19]Gröschel, M., Keimer, A., Leugering, G. & Wang, Z. (2014) Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity. SIAM J. Control Optim. 52(4), 21412163.
[20]Karlsen, K., Risebro, N. H. & Towers, J. D. (2003). L1–stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 149.
[21]Karlsen, K. H. & Risebro, N. H. (2003) On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn. Syst. 9(5), 10811104.
[22]Karlsen, K. H. & Towers, J. D. (2017). Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ., 14(04), 671701.
[23]Keimer, A. & Pflug, L. (2017) Existence, uniqueness and regularity results on nonlocal balance laws. J. Differential Equations 263(7), 40234069.
[24]Keimer, A. & Pflug, L. (2019) On approximation of local conservation laws by nonlocal conservation laws. J. Appl. Math. Anal. Appl. 475(2), 19271955.
[25]Kružkov, S. N. (1970). First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228255.
[26]Lebacque, J. P. (1996). The Godunov scheme and what it means for first order traffic flow models. In: Proceedings 13th International Symposium on Transportation and Traffic Theory.
[27]Lighthill, M. J. & Whitham, G. B. (1955) On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. 229, 317345.
[28]Richards, P. I. (1956) Shock waves on the highway. Oper. Res. 4, 4251.
[29]Shen, W. (Sep 2018). Traveling Waves for Conservation Laws with Nonlocal Flux for Traffic Flow on Rough Roads. arXiv e-prints, arXiv:1809.02998.

Keywords

MSC classification

A non-local traffic flow model for 1-to-1 junctions

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.