[1]Accinelli, E. & Brida, J. G. (2006) Re-formulation of the Ramsey model of optimal growth with the Richards population growth law. WSEAS Trans. Math. 5, 473–478.

[2]Accinelli, E. & Brida, J. G. (2007) The Ramsey model with logistic population growth. Econ. Bull. 3, 1–8.

[3]Agricola, I. & Friedrich, T. (2002) Global Analysis. Differential Forms in Analysis, Geometry and Physics. Translated from the 2001 German original by Andreas Nestke. Graduate Studies in Mathematics, 52. American Mathematical Society, Providence, RI.

[4]Anita, S., Capasso, V., Kunze, H. & La Torre, D. (2013) Optimal control and long-run dynamics for spatial economic growth model with physical capital accumulation and pollution diffusion. Appl. Math. Lett. 26, 908–912.

[5]Anita, S., Capasso, V., Kunze, H. & La Torre, D. (2015) Dynamics and optimal control in a spatially structured economic growth model with pollution diffusion and environmental taxation. Appl. Math. Lett. 42, 36–40.

[6]Anita, S., Capasso, V., Kunze, H. & La Torre, D. (2017) Optimizing environmental taxation on physical capital for a spatially structured economic growth model including pollution diffusion. Vietnam J. Math. 54, 199–206.

[7]Antràs, P. (2004) Is the US aggregate production function Cobb–Douglas? New estimates of the elasticity of substitution. Contrib. Macroecon. 4, 1–34.

[8]Bentolila, S. & Saint-Paul, G. (2003) Explaining movements in the labor share. Contrib. Macroecon. 3, 1–31.

[9]Bowley, A. L. (1900) Wages in the United Kingdom in the Nineteenth Century: Notes for the Use of Students of Social and Economic Questions. Cambridge University Press, Cambridge.

[10]Bowley, A. L. (1937) Wages and Income in the United Kingdom Since 1860. Cambridge University Press.

[11]Brass, W. (1974) Perspectives in population prediction: illustrated by the statistics of England and Wales. J. R. Stat. Soc.: Ser. A. 137, 532–570.

[12]Brida, J. G. & CAySSIALS, G. (2016) Population dynamics and the Mankiw–Romer–Weil model. Int. J. Math. Model. Num. Opt. 7, 363–375.

[13]Brida, J. G., Cayssials, G. & Pereyra, J. S. (2016) The discrete-time Ramsey model with a decreasing population growth rate: stability and speed of convergence. J. Dyn. Syst. Diff. Equ. 6, 219–233.

[14]Cai, D. (2012) An economic growth model with endogenous carrying capacity and demographic transition. Math. Comp. Model. 55, 432–441.

[15]Calhoun, J. B. (1973) Death squared: the explosive growth and demise of a mouse population. Proc. R. Soc. Med. 66, 80–88.

[16]Capasso, V., Engbers, R. & La Torre, D. (2012) Population dynamics in a spatial Solow model with a convex–concave production function. In: Perna, C. and Sibillo, M. (editors), Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer. Milano, pp. 61–68.

[17]Cass, D. (1965) Optimum growth in an aggregative model of capital accumulation. Rev. Econ. Stud. 32, 233–240.

[18]Cheviakov, A. F. & Hartwick, J. (2009) Constant per capita consumption paths with exhaustible resources and decaying produced capital, Ecol. Econ. 68, 2969–2973.

[19]Clark, C. W. (1971) Economically optimal policies for the utilization of biologically renewable resources. Math. Biosci. 12, 245–260.

[20]Cobb, C. W. & Douglas, P. H. (1928) A theory of production. Am. Econ. Rev. 18 (Supplement), 139–165.

[21]Cochran, C. M., Mclenaghan, R. G. & Smirnov, R. G. (2017) Equivalence problem for the orthogonal separable webs in 3-dimensional hyperbolic space. J. Math. Phys. 58, 063513.

[22]Cohen, A. (1911) An Introduction to the Lie Theory of One-Parameter Groups. DC Health & Company, Lexington.

[23]Domar, E. D. (1946) Capital expansion, rate of growth, and employment. Econometrica 14, 137–147.

[24]Douglas, P. H. (1976) The Cobb–Douglas production function once again: its history, its testing, and some new empirical values. J. Polit. Econ. 84, 903–916.

[25]Elsby, M. W. L., Hobijn, B. & Sahin, A. (2013) The decline of the U.S. labor share. Brookings Pap. Econ. Act. 47, 1–63.

[26]Engbers, R., Burger, M. & Capasso, V. (2014) Inverse problems in geographical economics: parameter identification in the spatial Solow model. Philos. Trans. R. Soc. Lond. A 372, 20130402.

[27]Ferrara, M. & Guerrini, L. (2008) Economic development and sustainability in a two-sector model with variable population growth rate. J. Math. Sci.: Adv. Appl. 1, 232–339.

[28]Ferrara, M. & Guerrini, L. (2008) Economic development and sustainability in a Solow model with natural capital and logistic population change. Int. J. Pure Appl. Math. 48, 435–450.

[29]Ferrara, M. & Guerrini, L. (2008) The neoclassical model of Solow and Swan with logistic population growth. In: *Proceedings of the 2nd International Conference of IMBIC on “Mathematical Sciences for Advancement of Science and Technology (MSAST)”. Kolkata, India*, pp. 119–127.

[30]Ferrara, M. & Guerrini, L. (2009) The Green Solow model with logistic population change. In: *Proceedings of the 10th WSEAS International Conference on Mathematics and Computers in Business and Economics. Prague. Czech Republic. March 23–25*, pp. 17–20.

[31]Ferrara, M. & Guerrini, L. (2009) The Ramsey model with logistic population growth and Benthamite felicity function. In: *Proceedings of the 10th WSEAS International Conference on Mathematics and Computers in Business and Economics. Prague. Czech Republic. March 23–25*, pp. 231–234.

[32]Ferrara, M. & Guerrini, L. (2009) The Ramsey model with logistic population growth and Benthamite felicity function revisited. WSEAS Trans. Math. 8, 97–106.

[33]Gable, R. W. (1959) The politics and economics of the 1957–1958 recession. West. Polit. Q. 12, 557–559.

[34]García-Peãlosa, C. & Turnovsky, S. J. (2009) The dynamics of wealth inequality in a simple Ramsey model: a note on the role of production flexibility. Macroeconomic Dynamics 13, 250–262.

[35]Guerrini, L. (2010) A closed-form solution to the Ramsey model with the von Bertalanffy population law. Appl. Math. Sci. 4, 3239–3244.

[36]Guerrini, L. (2010) The Ramsey model with a bounded population growth rate. J. Macroecon. 32, 872–878.

[37]Guerrini, L. (2010) A closed-form solution to the Ramsey model with logistic population growth. Econ. Model., 27, 1178–1182.

[38]Guscina, A. (2007) Effects of globalization on labor’s share in national income. IMFWorking Paper No. 06/294.

[39]Harrod, R. F. (1939) An essay in dynamics theory. Econ. J. 49, 14–33.

[40]Hatemi-J., A. (2014) Asymmetric generalized impulse responses with an application in finance. Econ. Model. 36, 18–22.

[41]Horwood, J. T., Mclenaghan, R. G. & Smirnov, R. G. (2005) Invariant classification of orthogonally separable Hamiltonian systems in Euclidean Space. Commun. Math. Phys. 259, 679–709.

[42]Inada, K. (1963) On a two-sector model of economic growth: comments and a generalization. Rev. Econ. Stud. 30, 119–127.

[43]Jones, C. I. & Scrimgeour, D. (2008) A new proof of Uzawa’s steady-state growth theorem. Rev. Econ. Stat. 90, 180–182.

[44]Kabacoff, R. I. (2010) R in Action. Manning, New York.

[45]Karabournis, L. & Neiman, B. (2014) The global decline of the labor share. Q. J. Econ. 129, 61–103.

[46]Keynes, J. M. (1939) Relative movements of real wages and output. The Econ. J. 49, 34–51.

[47]Klein, D. R. (1968) The introduction, increase, and crash of reindeer on St. Matthew island. J. Wildl. Manage. 32, 350–367.

[48]Klein, F. (1872) Vergleichende Betrachtungen über Neuere Geometrische Forschungen, Verlag von Andreas Deichert, Erlangen.

[49]Koop, G., Pesaran, M. H. & Potter, S. M. (1996) Impulse response analysis in nonlinear multivariate models. J. Econ. 74, 119–147.

[50]Koopmans, T. C. (1965) On the concept of optimal economic growth. In: The Economic Approach to Development Planning. Chicago. Rand McNally, pp. 22–287.

[51]Krämer, H. M. (2011) Bowley’s Law: the diffusion of an empirical supposition into economic theory. Cahiers d’Économie Politique/Pap. Polit. Econ. 61, 19–49.

[52]La Torre, D., Liuzzi, D. & Marsiglio, S. (2015) Pollution diffusion and abatement activities across space and over time. Math. Soc. Sci. 78, 48–63.

[53]Leach, D. (1981) Re-evaluation of the logistic curve for human populations. J. R. Stat. Soc., Ser. A 144, 94–103.

[54]Nerlove, M. (1965) Estimation and Identification of Cobb–Douglas Production Functions. Rand McNally, Chicago.

[55]Oliver, E. R. (1982) Notes on the logistic curve for human populations. Journal of the Royal Statistical Society, Series A 145, 359–363.

[56]Olver, P. J. (1993) Applications of Lie Groups to Differential Equations (2nd edition). Springer, New York.

[57]Olver, P. J. (1995) Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge.

[58]Pesaran, H. H. & Shin, Y. (1998) Generalized impulse response analysis in linear multivariate models. Econ. Lett. 58, 17–29.

[59]Rabbani, S. Derivation of constant labor and capital share from the Cobb–Douglas production function, http://srabbani.com. [60]Ramsey, F. P. (1928) A mathematical theory of saving. Econ. J. 38, 543–559.

[61]Rudin, W. (1976) Principles of Mathematical Analysis. New York. McGraw Hill.

[62]Sato, R. & Ramachandran, R. V. (2014) Symmetry and Economic Invariance (2nd edition). Springer, New York.

[63]Sato, R. (1970) The estimation of biased technical progress and the production function. Int. Econ. Rev. 11, 179–208.

[64]Sato, R. (1977) Homothetic and non-homothetic CES production functions. Am. Econ. Rev. 67, 559–569.

[65]Sato, R. (1980) The impact of technical change on holotheticity of production functions. Rev. Econ. Stud. 47, 767–776.

[66]Sato, R. (1981) Theory of Technical Change and Economic Invariance. Academic Press, Cambridge, Massachusetts.

[67]Saunders, D. J. (1989) The Geometry of Jet Bundles. London Mathematical Society Lecture Notes Series **142**. Cambridge University Press, Cambridge.

[68]Schneider, D. (2011) The labor share: A review of theory and evidence. *SFB649 Economic Risk. Discussion Paper*.

[69]Sims, C. D. (1980) Macroeconomics and reality. Econometrica: J. Econ. Soc. 48, 1–48.

[70]Skiba, A. K. (1978) Optimal growth with convex–concave production function. Econometrica 46, 527–539.

[71]Solow, R. M. (1956) A contribution to the theory of economic growth. Q. J. Econ. 70, 65–94.

[72]Solow, R. M. (1957) Technological change and aggregate production function. Rev. Econ. Stat. 39, 312–320.

[73]Stigler, G. (1961) Economic problems in measuring changes in productivity. In: *Output, Input and Productivity*. Princeton. Income and Wealth Series, pp. 47–63.

[74]Swan, T. W. (1956) Economic growth and capital accumulation. Econ. Record 32, 334–361.

[75]Tainter, J. A. (1988) The Collapse of Complex Societies. New York & Cambridge. Cambridge University Press.

[76]Tinter, G. (1952) Econometrics. New York. Wiley.

[77]Verhurst, P. F. (1845) Recherches mathématiques sur la loi d’accroissement de la population. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles Lettres de Bruxelles 18, 1–38.

[78]This article usesmaterial from the Wikipedia article *Gold reserve*, which is released under the Creative Commons Attribution-Share-Alike License 3.0.

[79]This article uses material from the Wikipedia article *Petroleum industry*, which is released under the Creative Commons Attribution-Share-Alike License 3.0.

[80]This article uses material from U.S. Bureau of Labor Statistics, Nonfarm Business Sector: Non-Labor Payments [PRS85006083], Retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRS85006083, October 30, 2017. [81]This article uses material from U.S. Bureau of Labor Statistics, Nonfarm Business Sector: Compensation [PRS85006063], Retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PRS85006063, October 31, 2017. [82]This article uses material from U.S. Bureau of Labor Statistics, Nonfarm Business Sector: Real Output [OUTNFB], Retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/OUTNFB, October 31, 2017.