Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-21T16:54:02.054Z Has data issue: false hasContentIssue false

A free boundary problem involving a cusp Part I: Global analysis

Published online by Cambridge University Press:  26 September 2008

H. W. Alt
Affiliation:
Institut für Angewandte Mathematik der Universität Bonn, Wegelerstraβe 6, D-5300 Bonn I, Germany
C. J. van Duijn
Affiliation:
Faculteit der Technische Wiskunde en Informatica, Technische Universiteit, Delft, PO Box 5031, NL-2600 GA Delft, The Netherlands

Abstract

We consider the behaviour of the interface (free boundary) between fresh and salt water in a porous medium (a reservoir). The salt water is below the interface (with respect to the direction of gravity) and is stagnant. The fresh water is above the interface and moves towards the wells which are present in the reservoir. We give a description of the corresponding flow problem leading to a weak variational formulation involving a parameter Q which is related to the strength of the wells. We show that Q is a critical parameter in the following sense: there exists Qcr > 0 such that for Q < Qcr a smooth interface exists which is monotone with respect to Q. For Q = Qcr, a free boundary with one or more singularities (cusps) will occur at a positive distance from the wells. The global analysis for the problem (existence, uniqueness, monotonicity) is given here for two and three dimensional flow situations. The local cusp analysis is two-dimensional, and will be discussed in Part II.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alt, H. W. 1977 The fluid flow through porous media. Regularity of the free surface. Manuscripta Math. 21, 255272.Google Scholar
[2]Alt, H. W. 1979 Strömungen durch inhomogene poröse Medien mit freien Rand. J. Reine Angew. Math. 305, 89115.Google Scholar
[3]Alt, H. W. & Van Duun, C. J. 1990 A stationary flow of fresh and salt groundwater in a coastal aquifier. Nonlinear Analysis TMA 14, 625656.CrossRefGoogle Scholar
[4]Alt, H. W. & Gilardi, G. 1981 The behavior of the free boundary for the dam problem. Ann. Scu. Norm. Pisa 9, 571626.Google Scholar
[5]Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier, New York.Google Scholar
[6]Da Veiga, B. 1972 Sur la régularité des solutions de l'équation div A(x, u, ∇u) = B(x, u, ∇u) avec des conditions aux limites unilatérales et mêlées. Annali di Mat., Serie IV 93, 173230.CrossRefGoogle Scholar
[7]Bruining, J., Van Duun, C. J. & Schotting, R. J. 1991 Simulation of coning in bottom water-driven reservoirs. Transport in Porous Media 6, 3569.Google Scholar
[8]Friedman, A. 1982 Variational Principles and Free-boundary Problems. Wiley.Google Scholar
[9]Lorentz, H. A. 1912 Grondwaterbeweging in de nabijheid van bronnen. De Ingenieur 49, 2426.Google Scholar
[10]Muskat, M. 1946 The Flow of Homogeneous Fluids through Porous Media. Edwards.Google Scholar
[11]Stampacchia, G. 1974 On the filtration of a fluid through a porous medium with variable cross section. Russ. Math. Surveys 29, 89102.Google Scholar
[12]Strack, O. D. L. 1989 Groundwater Mechanics. Prentice Hall.Google Scholar
[13]Yih, C. S. 1964 A transformation for free surface flow in porous media. Phys. Fluids 7, 2024.CrossRefGoogle Scholar