Skip to main content Accessibility help

Asymptotic approximations for the plasmon resonances of nearly touching spheres

  • O. SCHNITZER (a1)


Excitation of surface-plasmon resonances of closely spaced nanometallic structures is a key technique used in nanoplasmonics to control light on subwavelength scales and generate highly confined electric-field hotspots. In this paper, we develop asymptotic approximations in the near-contact limit for the entire set of surface-plasmon modes associated with the prototypical sphere dimer geometry. Starting from the quasi-static plasmonic eigenvalue problem, we employ the method of matched asymptotic expansions between a gap region, where the boundaries are approximately paraboloidal, pole regions within the spheres and close to the gap, and a particle-scale region where the spheres appear to touch at leading order. For those modes that are strongly localised to the gap, relating the gap and pole regions gives a set of effective eigenvalue problems formulated over a half space representing one of the poles. We solve these problems using integral transforms, finding asymptotic approximations, singular in the dimensionless gap width, for the eigenvalues and eigenfunctions. In the special case of modes that are both axisymmetric and odd about the plane bisecting the gap, where matching with the outer region introduces a logarithmic dependence upon the dimensionless gap width, our analysis follows Schnitzer [Singular perturbations approach to localized surface-plasmon resonance: nearly touching metal nanospheres. Phys. Rev. B92(23), 235428 (2015)]. We also analyse the so-called anomalous family of even modes, characterised by field distributions excluded from the gap. We demonstrate excellent agreement between our asymptotic formulae and exact calculations.



Hide All

The author acknowledges funding from EPSRC New Investigator Award EP/R041458/1.



Hide All
[1] Abramowitz, M. & Stegun, I. A. (1972) Handbook of Mathematical Functions, Dover, New York.
[2] Agranovich, M. S., Katsenelenbaum, B. Z., Sivov, A. N. & Voitovich, N. N. (1999) Generalized Method of Eigenoscillations in Diffraction Theory, Vch Pub, Berlin, Germany.
[3] Ammari, H., Millien, P., Ruiz, M. & Zhang, H. (2017) Mathematical analysis of plasmonic nanoparticles: the scalar case. Arch. Ration. Mech. Anal. 224(2), 597658.
[4] Ammari, H., Ruiz, M., Yu, S. & Zhang, H. (2016) Mathematical analysis of plasmonic resonances for nanoparticles: the full maxwell equations. J. Differ. Equations 261(6), 36153669.
[5] Ando, K. & Kang, H. (2016) Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann–Poincaré operator. J. Math. Anal. Appl. 435(1), 162178.
[6] Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J. & Van Duyne, R. P. (2008) Biosensing with plasmonic nanosensors. Nat. Mater. 7(6), 442453.
[7] Atwater, H. A. & Polman, A. (2010) Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205213.
[8] Bender, C. M. & Orszag, S. A. (2013) Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, Springer Science & Business Media, Berlin, Germany.
[9] Bergman, D. J. (1979) Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum. Phys. Rev. B 19(4), 2359.
[10] Bergman, D. J. & Farhi, A. (2018) Spectral method for the static electric potential of a charge density in a composite medium. Phys. Rev. A 97(4), 043855.
[11] Bergman, D. J. & Stockman, M. I. (2003) Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90(2), 027402.
[12] Bergman, D. J. & Stroud, D. (1980) Theory of resonances in the electromagnetic scattering by macroscopic bodies. Phys. Rev. B 22(8), 3527.
[13] Chen, P. Y., Bergman, D. J. & Sivan, Y. (2017) Generalizing normal mode expansion of electromagnetic green’s tensor to lossy resonators in open systems. arXiv preprint arXiv:1711.00335.
[14] Chen, H., Shao, L., Li, Q., & Wang, J. (2013) Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42(7), 26792724.
[15] Chuntonov, L. & Haran, G. (2011) Effect of symmetry breaking on the mode structure of trimeric plasmonic molecules. J. Phys. Chem. C 115(40), 1948819495.
[16] Davis, T. J. & Gómez, D. E. (2017) Colloquium: an algebraic model of localized surface plasmons and their interactions. Rev. Mod. Phys. 89(1), 011003.
[17] Engheta, N. (2007) Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317(5845), 16981702.
[18] Farhi, A. & Bergman, D. J. (2016) Electromagnetic eigenstates and the field of an oscillating point electric dipole in a flat-slab composite structure. Phys. Rev. A 93(6), 063844.
[19] Fredkin, D. R. & Mayergoyz, I. D. (2003) Resonant behavior of dielectric objects (electrostatic resonances). Phys. Rev. Lett. 91(25), 253902.
[20] Giannini, V., Fernández-Domínguez, A. I., Heck, S. C. & Maier, S. A. (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(6), 38883912.
[21] Grieser, D. The plasmonic eigenvalue problem. Rev. Math. Phys. 26(03), 1450005 (2014).
[22] Grieser, D., Uecker, H., Biehs, S., Huth, O., Rüting, F. & Holthaus, M. (2009) Perturbation theory for plasmonic eigenvalues. Phys. Rev. B 80(24), 245405.
[23] Gunnarsson, L., Rindzevicius, T., Prikulis, J., Kasemo, B., Käll, M., Zou, S. & Schatz, G. C. (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J. Phys. Chem. B 109(3), 10791087.
[24] Hill, R. T., Mock, J. J., Urzhumov, Y., Sebba, D. S., Oldenburg, S. J., Chen, S.-Y., Lazarides, A. A., Chilkoti, A. & Smith, D. R. (2010) Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett. 10(10), 41504154.
[25] Hinch, E. J. (1991) Perturbation Methods, Cambridge University Press, Cambridge, UK.
[26] Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 21152120.
[27] Jeffrey, D. J. & Van Dyke, M. (1978) The temperature field or electric potential around two almost touching spheres. IMA J. Appl. Math. 22(3), 337351.
[28] Kauranen, M. & Zayats, A. V. (2012) Nonlinear plasmonics. Nat. Photonics 6(11), 737748.
[29] Klimov, V. V. (2014) Nanoplasmonics, CRC Press, Boca Raton, FL.
[30] Klimov, V. V. & Guzatov, D. V. (2007) Optical properties of an atom in the presence of a two-nanosphere cluster. Quantum Electron. 37(3), 209.
[31] Klimov, V. V. & Guzatov, D. V. (2007) Strongly localized plasmon oscillations in a cluster of two metallic nanospheres and their influence on spontaneous emission of an atom. Phys. Rev. B 75(2), 024303.
[32] Klimov, V. V. & Guzatov, D. V. (2007) Plasmonic atoms and plasmonic molecules. Appl. Phys. A 89(2), 305314.
[33] Klimov, V. V. & Lambrecht, A. (2009) Van der Waals forces between plasmonic nanoparticles. Plasmonics 4(1), 3136.
[34] Lei, D. Y., Fernández-Domínguez, A. I., Sonnefraud, Y., Appavoo, K., Haglund, R. F. Jr., Pendry, J. B. & Maier, S. A. (2012) Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. ACS Nano 6(2), 13801386.
[35] Lebedev, V., Vergeles, S. & Vorobev, P. (2010) Giant enhancement of electric field between two close metallic grains due to plasmonic resonance. Opt. Lett. 35(5), 640642.
[36] Lebedev, V. V., Vergeles, S. S. & Vorobev, P. E. (2013) Surface modes in metal–insulator composites with strong interaction of metal particles. Appl. Phys. B 111(4), 577588.
[37] Maier, S. A. (2007) Plasmonics: Fundamentals and Applications, Springer Science & Business Media, Berlin, Germany.
[38] Mayergoyz, I. D. (2013) Plasmon Resonances in Nanoparticles, Vol. 6, World Scientific, Singapore.
[39] Mayergoyz, I. D., Fredkin, D. R. & Zhang, Z. (2005) Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72(15), 155412.
[40] Moon, P. H. & Spencer, D. E. (1961) Field Theory Handbook: Including Coordinate Systems, Differential Equations, and Their Solutions, Springer-Verlag, Berlin, Germany.
[41] Muskens, O. L., Giannini, V., Sanchez-Gil, J. A. & Gómez Rivas, J. (2007) Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. Opt. Express 15(26), 1773617746.
[42] Nordlander, P., Oubre, C., Prodan, E., Li, K. & Stockman, M. I. (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett. 4(5), 899903.
[43] Ouyang, F. & Isaacson, M. (1989) Surface plasmon excitation of objects with arbitrary shape and dielectric constant. Philos. Mag. 60(4), 481492.
[44] Pendry, J. B., Fernández-Domínguez, A. I., Luo, Y. & Zhao, R. (2013) Capturing photons with transformation optics. Nat. Phys. 9(8), 518522.
[45] Romero, I., Aizpurua, J., Bryant, G. W. & García De Abajo, F. J. (2006) Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14(21), 99889999.
[46] Ruppin, R. (1982) Surface modes of two spheres. Phys. Rev. B 26(6), 3440.
[47] Sandu, T. (2013) Eigenmode decomposition of the near-field enhancement in localized surface plasmon resonances of metallic nanoparticles. Plasmonics 8(2), 391402.
[48] Sauvan, C., Hugonin, J.-P., Maksymov, I. S. & Lalanne, P. (2013) Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys. Rev. Lett. 110(23), 237401.
[49] Schnitzer, O. (2015) Singular perturbations approach to localized surface-plasmon resonance: nearly touching metal nanospheres. Phys. Rev. B 92(23), 235428.
[50] Schnitzer, O., Giannini, V., Craster, R. V. & Maier, S. A. Asymptotics of surface-plasmon redshift saturation at subnanometric separations. Phys. Rev. B 93(4), 041409 (2016).
[51] Schnitzer, O., Giannini, V., Maier, S. A. & Craster, R. V. (2016) Surface plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit. Proc. R. Soc. A 472(2191), 20160258.
[52] Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S. & Brongersma, M. L. (2010) Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193204.
[53] Sneddon, I. N. (1972) The Use of Integral Transforms, McGraw-Hill, New York, NY.
[54] Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M. & Parak, W. J. (2008) Biological applications of gold nanoparticles. Chem. Soc. Rev. 37(9), 18961908.
[55] Sukharev, M. & Seideman, T. (2007) Light trapping and guidance in plasmonic nanocrystals. J. Chem. Phys. 126(20), 204702.
[56] Van Dyke, M. D. (1975) Perturbation Methods in Fluid Dynamics, Parabolic Press, Stanford, CA.
[57] Voicu, R. C. & Sandu, T. (2017) Analytical results regarding electrostatic resonances of surface phonon/plasmon polaritons: separation of variables with a twist. Proc. R. Soc. A 473(2199), 20160796.
[58] Yu, S. & Ammari, H. (2018) Plasmonic interaction between nanospheres. SIAM Rev. 60(2), 356385.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed