Skip to main content Accessibility help
×
Home

An existence result for a system of coupled semilinear diffusion-reaction equations with flux boundary conditions

  • HARI SHANKAR MAHATO (a1) and MICHAEL BÖHM (a2)

Abstract

In this paper, we consider diffusion, reaction and dissolution of mobile and immobile chemical species present in a porous medium. Inflow–outflow boundary conditions are considered at the outer boundary and the reactions amongst the species are assumed to be reversible which yield highly nonlinear reaction rate terms. The dissolution of immobile species takes place on the surfaces of the solid parts. Modelling of these processes leads to a system of coupled semilinear partial differential equations together with a system of ordinary differential equations (ODEs) with multi-valued right-hand sides. We prove the global existence of a unique positive weak solution of this model using a regularization technique, Schaefer's fixed point theorem and Lyapunov type arguments.

Copyright

References

Hide All
[1]Clement, P. & Li, S. (1994) Abstract parabolic quasilinear equations and application to a groundwater flow problem. Adv. Appl. Math. Sci. 3, 1732.
[2]Duijn, C. J. & Knabner, P. (1997) Travelling wave behaviour of crystal dissolution in porous media flow. Eur. J. Appl. Math. 8, 4972.
[3]Evans, L. C. (1998) Partial Differential Equations, volume 19. AMS Publication, Providence, Rhode Island.
[4]Fatima, T., Arab, N., Zemskov, E. P. & Muntean, A. (2011) Homogenization of a reaction-diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains. J. Eng. Math. 69, 261276.
[5]Hoffmann, J. (2010) Reactive Transport and Mineral Dissolution/Precipitation in Porous Media: Efficient Solution Algorithms, Benchmark Computations and Existence of Global Solutions. Ph.D. Thesis, University of Erlangen-Nürnberg.
[6]Knabner, P. (1986) A free boundary problem arising from the leaching of saline soils. SIAM J. Math. Anal. 17 (3), 610625.
[7]Knabner, P. and van Duijn, C. J. (1996) Crystal dissolution in porous media flow. J. Appl. Math. Mech. 76, 329332.
[8]Knabner, P., van Duijn, C. J. & Hengst, S. (1995) An analysis of crystal dissolution fronts in flows through porous media part 1: Compatible boundary conditions. Adv. Water Resour. 18, 171185.
[9]Kräutle, S. (2008) General multispecies reactive transport problems in porous media. Habilitation Thesis, University of Erlangen-Nürnberg, Germany, http://www1.am.uni-erlangen.de/~kraeutle/habil.pdf.
[10]Kräutle, S. (2011) Existence of global solutions of multicomponent reactive transport problems with mass action kinetics in porous media. J. Appl. Anal. Comput. 1, 497515.
[11]Kumar, K., Neuss-Radu, M. & Pop, I. S. (2013) Homogenization of a pore scale model for precipitation and dissolution in porous media. CASA Report 13-32, TU Eindhoven.
[12]Mahato, H. S. (2013) Homogenization of a System of Nonlinear Multi-Species Diffusion-Reaction Equations in an H1,p Setting. Doctoral Thesis, University of Bremen, Germany, 2013. http://elib.suub.uni-bremen.de/edocs/00103256-1.pdf.
[13]Mahato, H. S. and Böhm, M. (2013a) Global existence and uniqueness for a system of nonlinear multi-species diffusion-reaction equations in an H 1,p setting. J. Appl. Comput. 3 (4), 357376.
[14]Mahato, H. S. & Böhm, B. (2013b) Homogenization of a system of semilinear diffusion-reaction equations in an H 1,p setting. Electron. J. Differ. Eqns 2013 (2013)(210), 122.
[15]Muntean, A. (2006) A Moving Boundary Problem: Modeling, Analysis and Simulation of Concrete Carbonation. Doctoral Thesis, University of Bremen, Germany.
[16]Peter, M. A. (2006) Mathematical Modelling and Homogenization of Coupled Reaction-Diffusion Systems Taking into Account an Evolution of the Microstructure. Doctoral Thesis, University of Bremen, Germany.
[17]Prüss, J. and Schnaubelt, R. (2001) Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl. 256, 405430.
[18]Dintelmann, R. H. and Rehberg, J. (2009) Maximal parabolic regularity for divergence operators including mixed boundary conditions. J. Differ. Eqns 247, 13541396.
[19]Roubíček, T. (2005) Nonlinear Partial Differential Equations with Applications, Birkhäuser Publications, Basel-Boston-Berlin.
[20]Showalter, R. E. (1997) Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49. American Mathematical Society, Oregon State University, Corvallis, Oregon.
[21]van Duijn, C. J. & Pop, I. S. (2004) Crystals dissolution and precipitation in porous media: Pore scale analysis. J. für die Reine Angew. Math. 577, 171211.
[22]van Noorden, T. L., Pop, I. S. & Röger, M. (2007) Crystal dissolution and precipitation in porous media: L1-contraction and uniqueness. Discrete Continuous Dyn. Syst. 10131020.
[23]van Noorden, T. L. (2009) Crystal precipitation and dissolution in a porous medium: Effective equations and numerical experiments. Multiscale Model. Simul. 7 (3), 12201236.
[24]van Noorden, T. L. (2009) Crystal precipitation and dissolution in a thin strip. Eur. J. Appl. Math. 20 (1), 6991.
[25]van Noorden, T. L. & Pop., I. S. (1970) A Stefan problem modelling dissolution and precipitation in porous media. IMA J. Appl. Math. 73 (2), 393411.
[26]Yosida, K. (1970) Functional Analysis, Springer Verlag, Berlin.

Keywords

An existence result for a system of coupled semilinear diffusion-reaction equations with flux boundary conditions

  • HARI SHANKAR MAHATO (a1) and MICHAEL BÖHM (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed