Skip to main content Accessibility help

Ultrasound-guided arterial cannulation in infants improves success rate

  • U. Schwemmer (a1), H. A. Arzet (a1), H. Trautner (a1), S. Rauch (a1), N. Roewer (a1) and C.-A. Greim (a1)...



Background and objective: In small children, the placement of arterial catheters can be technically challenging for even the most experienced anaesthetist. We investigated whether ultrasound imaging would improve the success rate and reduce time demand and complications of radial artery cannulation. Method: In this prospective randomized study, we performed radial artery cannulation in 30 small children (age 40 ± 33 months) using two different techniques for localization of the vessel. In Group 1 (n = 15), the traditional palpation method was used, while in Group 2 (n = 15) cannulation was directed by vascular ultrasound imaging. In addition, we used ultrasound to determine the cross-sectional area of the radial artery with and without dorsiflexion. For statistical analysis, the non-parametric U-test for non-paired data and the Wilcoxon signed rank sum test for paired data were used. Differences were considered significant, when P < 0.05. Results: Ultrasound-guided puncture was successful in all children of Group 2 compared to only 12 of 15 (80%) children in Group 1. Fewer attempts with the imaging technique were required than with the traditional technique (20 vs. 34, P < 0.05). Dorsiflexion significantly reduced the mean cross-sectional area of the artery by 19%. Conclusion: The current pilot study suggests that ultrasound guidance is appropriate for radial artery catheter insertion, sharing many of the benefits of ultrasound-guided central vein catheter insertion.


Corresponding author

Correspondence to: U. Schwemmer, Department of Anaesthesiology, University of Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany. E-mail:


Hide All


Rhee KH, Berg RA. Antegrade cannulation of radial artery in infants and children. Chest 1995; 107: 182184.
Aldridge SA, Gupta JM. Peripheral artery cannulation in newborns. J Singapore Paediatr Soc 1992; 34: 1114.
Moller JC, Reiss I, Schaible T. Vascular access in neonates and infants – indications, routes, techniques and devices, complications. Intensive Care World 1995; 12: 4853.
Dillon A. Guidance on the use of ultrasound locating devices for placing central venous catheters. 2002; National Institute for Clinical Excellence (NICE Report), 19.
Verghese ST, McGill WA, Patel RI, Sell JE, Midgley FM, Ruttimann UE. Ultrasound-guided internal jugular venous cannulation in infants: a prospective comparison with the traditional palpation method. Anesthesiology 1999; 91: 7177.
Verghese ST, McGill WA, Patel RI, Sell JE, Midgley FM, Ruttimann UE. Comparison of three techniques for internal jugular vein cannulation in infants. Paediatr Anaesth 2000; 10: 505511.
Trautner H, Greim CA, Arzet H, Schwemmer U, Roewer N. Ultrasound-guided central venous cannulation in neuropaediatric patients to avoid measures causing potential increase in brain pressure. Anaesthesist 2003; 52: 115119.
Asheim P, Mostad U, Aadahl P. Ultrasound-guided central venous cannulation in infants and children. Acta Anaesthesiol Scand 2002; 46: 390392.
Donaldson JS, Morello FP, Junewick JJ, O'Donovan JC, Lim-Dunham J. Peripherally inserted central venous catheters: US-guided vascular access in pediatric patients. Radiology 1995; 197: 542544.
Alderson PJ, Burrows FA, Stemp LI, Holtby HM. Use of ultrasound to evaluate internal jugular vein anatomy and to facilitate central venous cannulation in paediatric patients. Br J Anaesth 1993; 70: 145148.
Miller RD, Fleisher LA, Johns RA, Savarese JJ, Wiener-Kronish JP, Young WL. Anesthesia. Churchill Livingstone, 2004.
Rhee KH, Berg RA. Antegrade cannulation of radial artery in infants and children. Chest 1995; 107: 182184.
Cilley RE. Arterial access in infants and children. Semin Pediatr Surg 1992; 1: 174180.
Sellden H, Nilsson K, Larsson LE, Ekstrom-Jodal B. Radial arterial catheters in children and neonates: a prospective study. Crit Care Med 1987; 15: 11061109.
Todres ID, Rogers MC, Shannon DC, Moylan FM, Ryan JF. Percutaneous catheterization of the radial artery in the critically ill neonate. J Pediatr 1975; 87: 273275.
Randolph AG, Cook DJ, Gonzales CA, Pribble CG. Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 1996; 24: 20532058.
Hind D, Calvert N, McWilliams R et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 2003; 327: 361.
Keenan SP. Use of ultrasound to place central lines. J Crit Care 2002; 17: 126137.
Grebenik CR, Boyce A, Sinclair ME, Evans RD, Mason DG, Martin B. NICE guidelines for central venous catheterization in children. Is the evidence base sufficient? Br J Anaesth 2005; 92: 827830.
Levin PD, Sheinin O, Gozal Y. Use of ultrasound guidance in the insertion of radial artery catheters. Crit Care Med 2003; 31: 481484.
Pearse RG. Percutaneous catheterisation of the radial artery in newborn babies using transillumination. Arch Dis Child 1978; 53: 549554.
Pfenninger J, Bernasconi G, Sutter M. Radial artery catheterization by surgical exposure in infants. Intensive Care Med 1982; 8: 139141.
Fukutome T, Kojiro M, Tanigawa K, Sese A. Doppler-guided “percutaneous” radial artery cannulation in small children. Anesthesiology 1988; 69: 434435.
Tada T, Amagasa S, Horikawa H. Absence of efficacy of ultrasonic two-way Doppler flow detector in routine percutaneous arterial cannulation. J Anesth 2003; 17: 206207.
Morray JP, Brandford HG, Barnes LF, Oh SM, Furman EB. Doppler-assisted radial artery cannulation in infants and children. Anesth Analg 1984; 63: 346348.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed