Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-04T19:19:06.260Z Has data issue: false hasContentIssue false

Tidal and rotational effects in the perturbations of hierarchical triple stellar systems

Published online by Cambridge University Press:  20 June 2008

T. Borkovits*
Affiliation:
Baja Astronomical Observatory of Bács-Kiskun County, 6500 Baja, Szegedi út, Pf. 766, Hungary
E. Forgács-Dajka
Affiliation:
Eötvös University, Department of Astronomy, 1518 Budapest, Pf. 32, Hungary
Get access

Abstract

Close hierarchical triple stellar systems offer a unique possibility to study not only theoretically, but even observationally (at least with limitations) the interaction between a non-spherical and temporally variable gravitational field and the internal structures of the stars. From this purpose a new numerical integrator was developed for studying the orbital and spin evolution of hierarchical triple stellar systems. The code includes equilibrium tide approximations with arbitrary direction of rotational axes. The variation of the orbital elements (e.g. the inclination of the close -eclipsing- binary) and its observational consequences according to the distorted models with different mass-distributions of the stars, as well as with and without dissipation, is studied in the case of the well-known eclipsing triple system Algol. We found that in the absence of dissipation the third star may cause sudden fluctuations in the orbital elements and in the rotation of the binary components, even if they were previously synchronized. Tidal dissipation can eliminate these fluctuations; nevertheless certain variations may subsist, and they could explain some effects that have been observed in several eclipsing binaries.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beust, H., Corporon, P., Siess, L., Forestini, M., & Lagrange, A.-M., 1997, A&A, 320, 478
Borkovits, T., 2001, Publ. Astr. Dept. ELTE Univ., 11, 23
Borkovits, T., Csizmadia, Sz., Hegedüs, T., et al., 2002, A&A, 392, 895
Borkovits, T., Érdi, B., Forgács-Dajka, E., & Kovács, T., 2003, A&A, 398, 1091
Borkovits, T., Könyves, V., & Hegedüs, T., 2004, Proc. 2nd Eddington workshop ”Stellar Structure and Habitable Planet Finding", Palermo, 9–11 April, 2003, ed. F. Favata and S. Aigrain, ESA SP-538, 285
Borkovits, T., Forgács-Dajka, E., & Regály, Zs., 2004, A&A, 426, 951
Borkovits, T., Forgács-Dajka, E., & Regály, Zs., 2005, ASP Conf. Ser., 333, 128
Borkovits, T., Forgács-Dajka, E., & Regály, Zs., 2007, A&A, 473, 191
Brown, E.W., 1936, MNRAS, 97, 62 CrossRef
Claret, A., 1999, A&A, 350, 56
Claret, A., & Gimènez, A., 1992, A&AS, 96, 255 PubMed
Claret, A., & Willems, B., 2002, A&A, 388, 518
Eggleton, P.P., & Kiseleva-Eggleton, L., 2001, ApJ, 562, 1012 CrossRef
Eggleton, P.P., Kiseleva, L.G., & Hut, P., 1998, ApJ, 499, 853 CrossRef
Finlay-Freundlich, E., 1958, Celestial Mechanics (Pergamon Press)
Ford, E.B., Kozinsky, B., & Rasio, F.A., 2000, ApJ, 535, 385 CrossRef
Harrington, R.S., 1968, AJ, 73, 190 CrossRef
Harrington, R.S., 1969, Cel. Mech., 1, 200 CrossRef
Kiseleva, L.G., Eggleton, P.P., & Mikkola, S., 1998, MNRAS, 300, 292 CrossRef
Kopal, Z., 1978, Dynamics of Close Binary Systems, D. Reidel (Dordrecht)
Krymolowski, Y., & Mazeh, T., 1999, MNRAS, 304, 720 CrossRef
Smeyers, P., & Willems, B., 2001, A&A, 373, 173
Söderhjelm, S., 1975, A&A, 42, 229
Söderhjelm, S., 1980, A&A, 89, 100
Söderhjelm, S., 1982, A&A, 107, 54
Söderhjelm, S., 1984, A&A, 141, 232
Tokis, J.N., 1974, Ap&SS, 26, 447
Truesdell, C., & Toupin, R., 1960, The Classical Field Theories in Handbuch der Physik, ed. S. Flügge, III/1, 481-491
Witte, M.G., & Savonije, G.J., 1999, A&A, 350, 129
Zahn, J.-P., 1966, Ann. Astrophys., 29, 489
Zahn, J.-P., 1989, A&A, 220, 112