Hostname: page-component-68945f75b7-72kh6 Total loading time: 0 Render date: 2024-08-05T18:45:32.300Z Has data issue: false hasContentIssue false

Superconducting Heterodyne Detectors beyond 1 Terahertz

Published online by Cambridge University Press:  11 June 2009

K. Jacobs*
Affiliation:
KOSMA, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
N. Honingh
Affiliation:
KOSMA, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
Get access

Abstract

Superconducting heterodyne mixers have found widespread use throughout the Millimeter- and Sub-millimeter wavelength range in radio astronomy applications that need very high spectral resolution. To extend their operating range into the Terahertz region, which is opened up by new high altitude observatories, airborne platforms or satellites, requires further development of superconductor materials as well as progress in radio frequency (RF) design and detector fabrication. This paper summarizes the basic challenges in these areas.

Type
Research Article
Copyright
© EAS, EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baselmans, J.J.A., 2004, Appl. Phys. Lett., 84, 11
Cherednichenko, S., et al., 2008, “Hot-electron bolometer terahertz mixers for the Herschel Space Observatory”, Rev. Sci. Instruments, 79, 034501 CrossRef
Guesten, R., et al., 2003, “GREAT: The German Receiver for Astronomy at Terahertz Frequencies”, Proc. SPIE, 4857, 56 CrossRef
Hajenius, M., et al., 2006, “Full characterization and analysis of a THz heterodyne receiver based on a NbN hot electron bolometer”, J. Appl. Phys. 100, 074507
Karpov, A., et al., 2004, “Low noise 1.2 THz SIS mixer for Herschel radio observatory”, Proc. 15th Int. Symp. Space THz Tech.
Kaul, A., et al., 2004, “Fabrication of wide IF 200–300 GHz superconductor-insulator-superconductor mixers with suspended metal beam leads formed on silicon-on-insulator”, J. Vac. Sci. Technol. B, 22(5), 2417
Kawakami, A., 2001, J. Appl. Phys., 90, 4796 CrossRef
Meledin, D., et al., 2008, “A 1.3-THz Balanced Waveguide HEB Mixer for the APEX Telescope”, IEEE Microwave Theory and Techniques, 57, 1, 89
Munoz, P.P., Jacobs, K., et al., 2006, “THz waveguide mixers with NbTiN HEBs on Silicon Nitride Membranes”, IEEE Microwave and Wireless Components Letters, 16, Issue 11, 606
Pavolotsky, A., et al., 2005, “Micromachining approach in fabricating of THz waveguide components”, Microelectronics J., 36, 683 CrossRef
SuperCAM, available online http://arxiv.org/pdf/astro-ph/0606061
Tucker, J.R., & Feldman, M., 1985, “Quantum Detection at Millimeter Wavelengths”, Rev. Mod. Phys., 57, 1055 CrossRef
Wagner-Gentner, A., Jacobs, K., et al., 2006, “Low loss THz window”, Infrared Physics & Technology, 48, 249 CrossRef
Wiedner, M., et al., 2006, “First observations with CONDOR, a 1.5 THz heterodyne receiver”, A&A, 454, L33-39
Zijlstra, T., et al., “Epitaxial aluminium-nitride tunnel barriers grown by nitridation with a plasma source”, http://arxiv.org/abs/0711.2221 Nov. 2007