Skip to main content Accessibility help
×
Home

Importance of Thermodynamics for Fragmentation and Star Formation

  • C. Kramer, S. Aalto, R. Simon, R.S. Klessen (a1), P.C. Clark (a1) and S.C.O. Glover (a2)...

Abstract

We discuss results from numerical simulations of star formation under various environmental conditions ranging from the turbulent interstellar medium to low-mass halos in the early universe. The thermodynamic behavior of the star-forming gas plays a crucial role in fragmentation and determines the stellar mass function as well as the dynamic properties of the nascent stellar cluster. The thermodynamic state of the gas is a result of the balance between heating and cooling processes, which in turn are determined by atomic and molecular physics and by chemical abundances. Features in the effective equation of state of the gas, such as a transition from a cooling to a heating regime, define a characteristic mass scale for fragmentation and so set the peak of the initial mass function of stars (IMF). As it is based on fundamental physical quantities and constants, this is an attractive approach to explain the apparent universality of the IMF in the solar neighborhood as well as the transition from purely primordial high-mass star formation to the low-mass mode observed today.

Copyright

References

Hide All
[1] Abel, T., Bryan, G.L., & Norman, M.L., 2002, Science, 295, 93
[2] Ballesteros-Paredes, J., Klessen, R.S., Mac Low, M.-M., & Vázquez-Semadeni, E., 2006, in Protostars and Planets V, ed. Reipurth, B., Jewitt, D., & Keil, K. (University of Arizona Press, Tucson) [astro-ph/0603357]
[3] Beers, T.C., & Christlieb, N., 2005, ARA&A, 43, 531
[4] Bromm, V., Ferrara, A., Coppi, P.S., & Larson, R.B., 2001, MNRAS, 328, 969
[5] Bromm, V., Coppi, P.S., & Larson, R.B., 2002, ApJ, 564, 23
[6] Chabrier, G., 2003, PASP, 115, 763
[7] Christlieb, N., Bessell, M.S., Beers, T.C., et al., 2002, Nature, 419, 904
[8] Clark, P.C., Glover, S.C.O., & Klessen, R.S., 2008, ApJ, 672, 757
[9] Jappsen, A.-K., Klessen, R.S., Larson, R.B., Li, Y., & Mac Low, M.-M., 2005, A&A, 435, 611
[10] Kroupa, P., 2002, Science, 295, 82
[11] Larson, R.B., 1985, MNRAS, 214, 379
[12] Larson, R.B., 2003, Rep. Prog. Phys., 66, 1651
[13] Li, Y., Klessen, R.S., & Mac Low, M.-M., 2003, ApJ, 592, 975
[14] Mac Low, M.-M., & Klessen, R.S., 2004, Rev. Mod. Phys., 76, 125
[15] Omukai, K., Tsuribe, T., Schneider, R., & Ferrara, A., 2005, ApJ, 626, 627
[16] O'Shea, B.W., & Norman, M.L., 2007, ApJ, 654, 66
[17] Schneider, R., Omukai, K., Inoue, A.K., & Ferrara, A., 2006, MNRAS, 369, 1437
[18] Spaans, M., & Silk, J., 2000, ApJ , 538, 115
[19] Spaans, M., & Silk, 2005, ApJ, 626, 644
[20] Tsuribe, T., & Omukai, K., 2006, ApJ, 642, L61
[21] Vázquez-Semadeni, E., Passot, T., & Pouquet, A., 1996, ApJ, 473, 881
[22] Yoshida, N., Omukai, K., Hernquist, L., & Abel, T., 2006, ApJ, 652, 6

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed