Skip to main content Accessibility help
×
Home

Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system

  • Steve Bryson (a1), Yekaterina Epshteyn (a2), Alexander Kurganov (a3) and Guergana Petrova (a4)

Abstract

We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest” steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.

Copyright

References

Hide All
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114 (1994) 4558.
[2] N. Andrianov, Testing numerical schemes for the shallow water equations. Preprint available at http://www-ian.math.uni-magdeburg.de/home/andriano/CONSTRUCT/testing.ps.gz (2004).
[3] Arminjon, P., Viallon, M.-C. and Madrane, A., A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9 (1997) 122.
[4] Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. and Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 20502065.
[5] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Math Series, Birkhäuser Verlag, Basel (2004).
[6] Bryson, S. and Levy, D., Balanced central schemes for the shallow water equations on unstructured grids. SIAM J. Sci. Comput. 27 (2005) 532552.
[7] Christov, I. and Popov, B., New nonoscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227 (2008) 57365757.
[8] de Saint-Venant, A.J.C., Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147154.
[9] Durlofsky, L.J., Engquist, B. and Osher, S., Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys. 98 (1992) 6473.
[10] Gallouët, T., Hérard, J.-M. and Seguin, N., Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479513.
[11] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102.
[12] Gottlieb, S., Shu, C.-W. and Tadmor, E., High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89112.
[13] Hubbard, M.E., Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys. 155 (1999) 5474.
[14] Hubbard, M.E., On the accuracy of one-dimensional models of steady converging/diverging open channel flows. Int. J. Numer. Methods Fluids 35 (2001) 785808.
[15] Jin, S., A steady-state capturing method for hyperbolic system with geometrical source terms. ESAIM: M2AN 35 (2001) 631645.
[16] Jin, S. and Wen, X., Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26 (2005) 20792101.
[17] D. Kröner, Numerical Schemes for Conservation Laws. Wiley, Chichester (1997).
[18] Kurganov, A. and Levy, D., Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397425.
[19] Kurganov, A. and Lin, C.-T., On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141163.
[20] Kurganov, A. and Petrova, G., Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Diff. Equ. 21 (2005) 536552.
[21] Kurganov, A. and Petrova, G., A second-order well-balanced positivity preserving scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133160.
[22] Kurganov, A. and Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 214282.
[23] Kurganov, A. and Tadmor, E., Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Diff. Equ. 18 (2002) 584608.
[24] Kurganov, A., Noelle, S. and Petrova, G., Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707740.
[25] LeVeque, R.J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346365.
[26] R. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press (2002).
[27] Lie, K.-A. and Noelle, S., On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 11571174.
[28] Nessyahu, H. and Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408463.
[29] Noelle, S., Pankratz, N., Puppo, G. and Natvig, J., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474499.
[30] Perthame, B. and Simeoni, C., A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201231.
[31] G. Russo, Central schemes for balance laws, in Hyperbolic problems: theory, numerics, applications II, Internat. Ser. Numer. Math. 141, Birkhäuser, Basel (2001) 821–829.
[32] G. Russo, Central schemes for conservation laws with application to shallow water equations, in Trends and applications of mathematics to mechanics: STAMM 2002, S. Rionero and G. Romano Eds., Springer-Verlag Italia SRL (2005) 225–246.
[33] Sweby, P.K., High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 9951011.
[34] van Leer, B., Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101136.
[35] Wierse, M., A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math. 7 (1997) 303335.
[36] Xing, Y. and Shu, C.-W., High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208 (2005) 206227.
[37] Xing, Y. and Shu, C.-W., A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1 (2006) 100134.

Keywords

Related content

Powered by UNSILO

Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system

  • Steve Bryson (a1), Yekaterina Epshteyn (a2), Alexander Kurganov (a3) and Guergana Petrova (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.