Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T14:18:53.486Z Has data issue: false hasContentIssue false

Plane wave discontinuous Galerkin methods: Analysis of the h-version

Published online by Cambridge University Press:  07 February 2009

Claude J. Gittelson
Affiliation:
SAM, ETH Zurich, 8092 Zürich, Switzerland. giclaude@student.ethz.ch; hiptmair@sam.math.ethz.ch
Ralf Hiptmair
Affiliation:
SAM, ETH Zurich, 8092 Zürich, Switzerland. giclaude@student.ethz.ch; hiptmair@sam.math.ethz.ch
Ilaria Perugia
Affiliation:
Dipartimento di Matematica, Università di Pavia, Italy. ilaria.perugia@unipv.it
Get access

Abstract

We are concerned with a finite element approximation for time-harmonic wave propagation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with numerical dispersion, render standard finite element methods grossly inefficient already in medium-frequency regimes. As an alternative, methods that incorporate information about the solution in the form of plane waves have been proposed. We focus on a class of Trefftz-type discontinuous Galerkin methods that employs trial and test spaces spanned by local plane waves. In this paper we give a priori convergence estimates for the h-version of these plane wave discontinuous Galerkin methods in two dimensions. To that end, we develop new inverse and approximation estimates for plane waves and use these in the context of duality techniques. Asymptotic optimality of the method in a mesh dependent norm can be established. However, the estimates require a minimal resolution of the mesh beyond what it takes to resolve the wavelength. We give numerical evidence that this requirement cannot be dispensed with. It reflects the presence of numerical dispersion.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M., Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 563575. CrossRef
Arnold, D., Brezzi, F., Cockburn, B. and Marini, L., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 17491779. CrossRef
Babuška, I. and Melenk, J., The partition of unity method. Int. J. Numer. Methods Eng. 40 (1997) 727758. 3.0.CO;2-N>CrossRef
Babuška, I. and Sauter, S., Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Review 42 (2000) 451484.
L. Banjai and S. Sauter, A refined Galerkin error and stability analysis for highly indefinite variational problems. Report 03-06, Institut für Mathematik, Universität Zürich, Zürich, Switzerland (2006).
S. Brenner and R. Scott, Mathematical theory of finite element methods, Texts in Applied Mathematics. Springer-Verlag, New York, 2nd edn. (2002).
Buffa, A. and Monk, P., Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925940. CrossRef
Castillo, P., Cockburn, B., Perugia, I. and Schötzau, D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 16761706. CrossRef
O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Ph.D. Thesis, Université Parix IX Dauphine, Paris, France (1996).
Cessenat, O. and Després, B., Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1998) 255299. CrossRef
Cessenat, O. and Després, B., Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Comp. Acoust. 11 (2003) 227238. CrossRef
Cummings, P. and Feng, X.-B., Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (2006) 139160. CrossRef
B. Despres, Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris, Ser. I 318 (1994) 939–944.
Farhat, C., Harari, I. and Hetmaniuk, U., A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 13891419. CrossRef
Farhat, C., Tezaur, R. and Weidemann-Goiran, P., Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 61 (2004) 19381956. CrossRef
Gabard, G., Discontinuous Galerkin methods with plane waves for the displacement-based acoustic equation. Int. J. Numer. Meth. Engr. 66 (2006) 549569. CrossRef
Gabard, G., Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comp. Phys. 225 (2007) 19611984. CrossRef
C. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinuous Galerkin methods. Preprint NI07088-HOP, Isaac Newton Institute Cambride, Cambrid, UK (2007). Available at http://www.newton.cam.ac.uk/preprints/NI07088.pdf.
Hetmaniuk, U., Stability estimates for a class of Helmholtz problems. Communications in Mathematical Sciences 5 (2007) 665678. CrossRef
R. Hiptmair and P. Ledger, A quadrilateral edge element scheme with minimum dispersion. Report 2003-17, SAM, ETH Zürich, Zürich, Switzerland (2003).
Huttunen, T. and Monk, P., The use of plane waves to approximate wave propagation in anisotropic media. J. Comput. Math. 25 (2007) 350367.
Huttunen, T., Monk, P. and Kaipio, J., Computational aspects of the ultra-weak variational formulation. J. Comp. Phys. 182 (2002) 2746. CrossRef
Huttunen, T., Malinen, M. and Monk, P., Solving Maxwell's equations using the ultra weak variational formulation. J. Comp. Phys. 223 (2007) 731758. CrossRef
F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences 132. Springer-Verlag, New York (1998).
Laghrouche, O., Bettes, P. and Astley, R., Modelling of short wave diffraction problems using approximating systems of plane waves. Int. J. Numer. Meth. Engr. 54 (2002) 15011533. CrossRef
J. Melenk, On Generalized Finite Element Methods. Ph.D. Thesis, University of Maryland, USA (1995).
Monk, P. and Wang, D., A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121136. CrossRef
Perrey-Debain, E., Laghrouche, O. and Bettess, P., Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Phil. Trans. R. Soc. London A 362 (2004) 561577. CrossRef
H. Riou, P. Ladevéze and B. Sourcis, The multiscale VTCR approach applied to acoustics problems. J. Comp. Acoust. (2008) (to appear).
Schatz, A., An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959962. CrossRef
C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998).
Stojek, M., Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Engr. 41 (1998) 831849. 3.0.CO;2-V>CrossRef
Tezaur, R. and Farhat, C., Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 66 (2006) 796815. CrossRef