Skip to main content Accessibility help
×
Home

A new H(div)-conforming p-interpolation operator in two dimensions

  • Alexei Bespalov (a1) and Norbert Heuer (a2)

Abstract

In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only H r (K) $\cap$ ${\bf \tilde H}$ -1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space ${\bf \tilde H}$ -1/2(div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions.

Copyright

References

Hide All
[1] Babuška, I. and Suri, M., The hp version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199238.
[2] Babuška, I., Craig, A., Mandel, J. and Pitkäranta, J., Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal. 28 (1991) 624661.
[3] Bespalov, A. and Heuer, N., Optimal error estimation for H(curl)-conforming p-interpolation in two dimensions. SIAM J. Numer. Anal. 47 (2009) 39773989.
[4] A. Bespalov and N. Heuer, Natural p-BEM for the electric field integral equation on screens. IMA J. Numer. Anal. (2010) DOI:10.1093/imanum/drn072.
[5] Bespalov, A. and Heuer, N., ThehpBEMS with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: a priori error analysis. Appl. Numer. Math. 60 (2010) 705718.
[6] A. Bespalov, N. Heuer and R. Hiptmair, Convergence of the natural hp-BEM for the electric field integral equation on polyhedral surfaces. arXiv:0907.5231 (2009).
[7] Boffi, D., Demkowicz, L. and Costabel, M., Discrete compactness for the p and hp 2D edge finite elements. Math. Models Methods Appl. Sci. 13 (2003) 16731687.
[8] Boffi, D., Costabel, M., Dauge, M. and Demkowicz, L., Discrete compactness for the hp version of rectangular edge finite elements. SIAM J. Numer. Anal. 44 (2006) 9791004.
[9] D. Boffi, M. Costabel, M. Dauge, L. Demkowicz and R. Hiptmair, Discrete compactness for the p -version of discrete differential forms. arXiv:0909.5079 (2009).
[10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991).
[11] Buffa, A., Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 118.
[12] Buffa, A. and Christiansen, S.H., The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94 (2003) 229267.
[13] Buffa, A. and Ciarlet, P., On, Jr. traces for functional spaces related to Maxwell's equations, Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 3148.
[14] Buffa, A., Hiptmair, R., von Petersdorff, T. and Schwab, C., Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95 (2003) 459485.
[15] Costabel, M. and Dauge, M., Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221276.
[16] Costabel, M. and McIntosh, A., Bogovskiĭ, On and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297320.
[17] Costabel, M., Dauge, M. and Demkowicz, L., Polynomial extension operators for H 1, H(curl) and H(div)-spaces on a cube. Math. Comp. 77 (2008) 19671999.
[18] L. Demkowicz, Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi, F. Brezzi, L. Demkowicz, R. Duran, R. Falk and M. Fortin Eds., Lect. Notes in Mathematics 1939, Springer-Verlag, Berlin (2008) 101–158.
[19] Demkowicz, L. and Babuška, I., p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41 (2003) 11951208.
[20] Dorr, M.R., The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984) 11801207.
[21] Heuer, N., Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88 (2001) 485511.
[22] R. Hiptmair, Discrete compactness for the p-version of tetrahedral edge elements. Seminar for Applied Mathematics, ETH Zürich, Switzerland (2008) arXiv:0901.0761.
[23] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972).
[24] S.E. Mikhailov, About traces, extensions and co-normal derivative operators on Lipschitz domains, in Integral Methods in Science and Engineering: Techniques and Applications, C. Constanda and S. Potapenko Eds., Birkhäuser, Boston (2008) 149–160.
[25] R.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.-L. Lions Eds., Amsterdam, North-Holland (1991) 523–639.

Keywords

Related content

Powered by UNSILO

A new H(div)-conforming p-interpolation operator in two dimensions

  • Alexei Bespalov (a1) and Norbert Heuer (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.