Skip to main content Accessibility help

High order semi-Lagrangian particle methods for transport equations: numerical analysis and implementation issues

  • G.-H. Cottet (a1), J.-M. Etancelin (a1), F. Perignon (a1) and C. Picard (a1)


This paper is devoted to the definition, analysis and implementation of semi-Lagrangian methods as they result from particle methods combined with remeshing. We give a complete consistency analysis of these methods, based on the regularity and momentum properties of the remeshing kernels, and a stability analysis of a large class of second and fourth order methods. This analysis is supplemented by numerical illustrations. We also describe a general approach to implement these methods in the context of hybrid computing and investigate their performance on GPU processors as a function of their order of accuracy.



Hide All
[1] Bergdorf, M., Cottet, G.-H. and Koumoutsakos, P., Multilevel adaptive particle methods for convection-diffusion equations. SIAM Multiscale Model. Simul. 4 (2005) 328357.
[2] Bergdorf, M. and Koumoutsakos, P., A lagrangian particle-wavelet method. SIAM Multiscale Model. Simul. 5 (2006) 980995.
[3] Büyükkeçeci, F., Awile, O. and Sbalzarini, I., A portable opencl implementation of generic particle-mesh and mesh-particle interpolation in 2d and 3d. Parallel Comput. 39 (2013) 94111.
[4] Chorin, A., Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973) 785796.
[5] Cocle, C., Winckelmans, G. and Daeninck, G., Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J. Comput. Phys. 227 (2008) 90919120.
[6] Cotter, C., Frank, J. and Reich, S., The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc. 133 (2007) 251260.
[7] G.-H. Cottet and P. Koumoutsakos, Vortex methods. Cambridge University Press (2000).
[8] Cottet, G.-H. and Weynans, L., Particle methods revisited: a class of high order finite-difference methods. C.R. Math. 343 (2006) 5156.
[9] Crouseilles, N., Respaud, T. and Sonnendrücker, E., A forward semi-lagrangian method for the numerical solution of the vlasov equation. Comput. Phys. Commun. 180 (2009) 17301745.
[10] R. Hockney and J. Eastwood, Simulation Using Particles. Inst. Phys. Publ. (1988).
[11] Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P. and Fasih, A., PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation. Parallel Comput. 38 (2012) 157174.
[12] Koumoutsakos, P., Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138 (1997) 821857.
[13] Koumoutsakos, P. and Leonard, A., High resolution simulation of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296 (1995) 138.
[14] Labbé, S., Laminie, J. and Louvet, V., Méthodologie et environnement de développement orientés objets: de l’analyse mathématique à la programmation. MATAPLI 70 (2003) 7992.
[15] Lagaert, J.-B., Balarac, G, and Cottet, G.-H., Hybrid spectral particle method for turbulent transport of passive scalar. J. Comput. Phys. 260 (2014) 127142.
[16] Leonard, A.. Computing three-dimensional incompressible flows with vortex elements. Annu. Rev. Fluid Mech. 17 (1985) 523559.
[17] LeVeque, R.J., High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33 (1996) 627665.
[18] Magni, A. and Cottet, G.-H., Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys. 231 (2012) 152172.
[19] Monaghan, J., Extrapolating B splines for interpolation. J. Comput. Phys. 60 (1985) 253262.
[20] Monaghan, J., An introduction to sph. Comput. Phys. Commun. 48 (1988) 8996.
[21] A. Munshi, The OpenCL Specification. Khronos OpenCL Working Group (2011).
[22] Ould-Salihi, M., Cottet, G.-H. and El Hamraoui, M., Blending finite-difference and vortex methods for incompressible flow computations. SIAM J. Sci. Comput. 22 (2000) 16551674.
[23] Respaud, T. and Sonnendruücker, E., Analysis of a new class of forward semi-lagrangian schemes for the 1d Vlasov-Poisson equations. Numer. Math. 118 (2011) 329366.
[24] Rossinelli, D., Bergdorf, M., Cottet, G.H. and Koumoutsakos, P., GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys. 229 (2010) 33163333.
[25] Rossinelli, D., Conti, C. and Koumoutsakos, P., Mesh-particle interpolations on graphics processing units and multicorecentral processing units. Philosophical Transactions of the Royal Society A: Mathematical, Phys. Engrg. Sci. 369 (2011) 21642175.
[26] Rossinelli, D. and Koumoutsakos, P., Vortex methods for incompressible flow simulations on the GPU. Visual Comput. 24 (2008) 699708.
[27] G. Ruetsch and P. Micikevicius, Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application Note (2009).
[28] Sbalzarini, I., Walther, J., Bergdorf, M., Hieber, S., Kotsalis, E. and Koumoutsakos, P., PPM–a highly efficient parallel particle–mesh library for the simulation of continuum systems. J. Comput. Phys. 215 (2006) 566588.
[29] Schoenberg, I., Contribution to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4 (1946) 4599.
[30] Valdez-Balderas, D., Dominguez, J., Rogers, B. and Crespo, A., Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-gpu clusters. J. Parallel Distrib. Comput. 73 (2012) 14831493.
[31] De Vuyst, F. and Salvarani, F., GPU-accelerated numerical simulations of the knudsen gas on time- dependent domains. Comput. Phys. Commun. 184 (2013) 532536.
[32] Yokota, R., Barba, L., Narumi, T. and Yasuoka, K., Petascale turbulence simulation using a highly parallel fast multipole method. Comput. Phys. Commun. 184 (2013) 445455.
[33] Zhang, Y., Cohen, J. and Owens, J.D., Fast tridiagonal solvers on the GPU. SIGPLAN Not. 45 (2010) 127136.


High order semi-Lagrangian particle methods for transport equations: numerical analysis and implementation issues

  • G.-H. Cottet (a1), J.-M. Etancelin (a1), F. Perignon (a1) and C. Picard (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed